1
|
Wachowicz P, Chasapi A, Krapp A, Cano Del Rosario E, Schmitter D, Sage D, Unser M, Xenarios I, Rougemont J, Simanis V. Analysis of S. pombe SIN protein association to the SPB reveals two genetically separable states of the SIN. J Cell Sci 2014; 128:741-54. [PMID: 25501816 DOI: 10.1242/jcs.160150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Anastasia Chasapi
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Andrea Krapp
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Elena Cano Del Rosario
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| | - Daniel Schmitter
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss-Prot. Group and Vital-IT Group, Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- Cell cycle control laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV-ISREC, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Heinrich S, Geissen EM, Kamenz J, Trautmann S, Widmer C, Drewe P, Knop M, Radde N, Hasenauer J, Hauf S. Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol 2013; 15:1328-39. [DOI: 10.1038/ncb2864] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/20/2013] [Indexed: 02/08/2023]
|
3
|
Tange Y, Kurabayashi A, Goto B, Hoe KL, Kim DU, Park HO, Hayles J, Chikashige Y, Tsutumi C, Hiraoka Y, Yamao F, Nurse P, Niwa O. The CCR4-NOT complex is implicated in the viability of aneuploid yeasts. PLoS Genet 2012; 8:e1002776. [PMID: 22737087 PMCID: PMC3380822 DOI: 10.1371/journal.pgen.1002776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/05/2012] [Indexed: 12/23/2022] Open
Abstract
To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | - Bunshiro Goto
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Kwang-Lae Hoe
- Chungnam National University, Graduate School of New Drug Discovery and Development, Yusong-gu, Daejeon, Korea
| | - Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong-gu, Daejeon, Korea
| | | | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, London, United Kingdom
| | - Yuji Chikashige
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutumi
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Fumiaki Yamao
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Paul Nurse
- Cancer Research UK, The London Research Institute, London, United Kingdom
- The Rockefeller University, New York, New York, United States of America
| | - Osami Niwa
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
4
|
Saitoh S, Kobayashi Y, Ogiyama Y, Takahashi K. Dual regulation of Mad2 localization on kinetochores by Bub1 and Dam1/DASH that ensure proper spindle interaction. Mol Biol Cell 2008; 19:3885-97. [PMID: 18632983 DOI: 10.1091/mbc.e08-03-0298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The spindle assembly checkpoint monitors the state of spindle-kinetochore interaction to prevent premature onset of anaphase. Although checkpoint proteins, such as Mad2, are localized on kinetochores that do not interact properly with the spindle, it remains unknown how the checkpoint proteins recognize abnormalities in spindle-kinetochore interaction. Here, we report that Mad2 localization on kinetochores in fission yeast is regulated by two partially overlapping but distinct pathways: the Dam1/DASH and the Bub1 pathways. We show that Mad2 is localized on "unattached" as well as "tensionless" kinetochores. Our observations suggest that Bub1 is required for Mad2 to detect tensionless kinetochores, whereas Dam1/DASH is crucial for Mad2 to detect unattached kinetochores. In cells lacking both Bub1 and Dam1/DASH, Mad2 localization on kinetochores is diminished, and mitotic progression appears to be accelerated despite the frequent occurrence of abnormal chromosome segregation. Furthermore, we found that Dam1/DASH is required for promotion of spindle association with unattached kinetochores. In contrast, there is accumulating evidence that Bub1 is involved in resolution of erroneous spindle attachment on tensionless kinetochores. These pathways may act as molecular sensors determining the state of spindle association on each kinetochore, enabling proper regulation of the checkpoint activation as well as promotion/resolution of spindle attachment.
Collapse
Affiliation(s)
- Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan.
| | | | | | | |
Collapse
|
5
|
Sczaniecka M, Feoktistova A, May KM, Chen JS, Blyth J, Gould KL, Hardwick KG. The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). J Biol Chem 2008; 283:23039-47. [PMID: 18556659 PMCID: PMC2516979 DOI: 10.1074/jbc.m803594200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitotic progression is driven by proteolytic destruction of securin and cyclins. These proteins are labeled for destruction by an ubiquitin-protein isopeptide ligase (E3) known as the anaphase-promoting complex or cyclosome (APC/C). The APC/C requires activators (Cdc20 or Cdh1) to efficiently recognize its substrates, which are specified by destruction (D box) and/or KEN box signals. The spindle assembly checkpoint responds to unattached kinetochores and to kinetochores lacking tension, both of which reflect incomplete biorientation of chromosomes, by delaying the onset of anaphase. It does this by inhibiting Cdc20-APC/C. Certain checkpoint proteins interact directly with Cdc20, but it remains unclear how the checkpoint acts to efficiently inhibit Cdc20-APC/C activity. In the fission yeast, Schizosaccharomyces pombe, we find that the Mad3 and Mad2 spindle checkpoint proteins interact stably with the APC/C in mitosis. Mad3 contains two KEN boxes, conserved from yeast Mad3 to human BubR1, and mutation of either of these abrogates the spindle checkpoint. Strikingly, mutation of the N-terminal KEN box abolishes incorporation of Mad3 into the mitotic checkpoint complex (Mad3-Mad2-Slp1 in S. pombe, where Slp1 is the Cdc20 homolog that we will refer to as Cdc20 hereafter) and stable association of both Mad3 and Mad2 with the APC/C. Our findings demonstrate that this Mad3 KEN box is a critical mediator of Cdc20-APC/C inhibition, without which neither Mad3 nor Mad2 can associate with the APC/C or inhibit anaphase onset.
Collapse
Affiliation(s)
- Matylda Sczaniecka
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EH9 3JR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Tange Y, Niwa O. Schizosaccharomyces pombe Bub3 is dispensable for mitotic arrest following perturbed spindle formation. Genetics 2008; 179:785-92. [PMID: 18505884 PMCID: PMC2429874 DOI: 10.1534/genetics.107.081695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 04/07/2008] [Indexed: 11/18/2022] Open
Abstract
The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
7
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|