1
|
Fouks B, Miller KJ, Ross C, Jones C, Rueppell O. Alternative double strand break repair pathways shape the evolution of high recombination in the honey bee, Apis mellifera. INSECT MOLECULAR BIOLOGY 2025; 34:185-202. [PMID: 39297191 PMCID: PMC11705527 DOI: 10.1111/imb.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 01/11/2025]
Abstract
Social insects, particularly honey bees, have exceptionally high genomic frequencies of genetic recombination. This phenomenon and underlying mechanisms are poorly understood. To characterise the patterns of crossovers and gene conversion in the honey bee genome, a recombination map of 187 honey bee brothers was generated by whole-genome resequencing. Recombination events were heterogeneously distributed without many true hotspots. The tract lengths between phase shifts were bimodally distributed, indicating distinct crossover and gene conversion events. While crossovers predominantly occurred in G/C-rich regions and seemed to cause G/C enrichment, the gene conversions were found predominantly in A/T-rich regions. The nucleotide composition of sequences involved in gene conversions that were associated with or distant from crossovers corresponded to the differences between crossovers and gene conversions. These combined results suggest two types of DNA double-strand break repair during honey bee meiosis: non-canonical homologous recombination, leading to gene conversion and A/T enrichment of the genome, and the canonical homologous recombination based on completed double Holliday Junctions, which can result in gene conversion or crossover and is associated with G/C bias. This G/C bias may be selected for to balance the A/T-rich base composition of eusocial hymenopteran genomes. The lack of evidence for a preference of the canonical homologous recombination for double-strand break repair suggests that the high genomic recombination rate of honey bees is mainly the consequence of a high rate of double-strand breaks, which could in turn result from the life history of honey bees and their A/T-rich genome.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
- CIRAD, UMR AGAP InstitutMontpellierFrance
| | - Katelyn J. Miller
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- Smithers PDSGaithersburgMarylandUSA
| | - Caitlin Ross
- Department of Computer SciencesUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- KitwareMinneapolisMinnesotaUSA
| | - Corbin Jones
- Department of BiologyUniversity of North Carolina at Chapel Hill & Carolina Center for Genome SciencesChapel HillNorth CarolinaUSA
| | - Olav Rueppell
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Pan Q, Darras H, Keller L. LncRNA gene ANTSR coordinates complementary sex determination in the Argentine ant. SCIENCE ADVANCES 2024; 10:eadp1532. [PMID: 38820161 PMCID: PMC11141628 DOI: 10.1126/sciadv.adp1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Animals have evolved various sex determination systems. Here, we describe a newly found mechanism. A long noncoding RNA (lncRNA) transduces complementary sex determination (CSD) signal in the invasive Argentine ant. In this haplodiploid species, we identified a 5-kilobase hyper-polymorphic region underlying CSD: Heterozygous embryos become females, while homozygous and hemizygous embryos become males. Heterozygosity at the CSD locus correlates with higher expression of ANTSR, a gene that overlaps with the CSD locus and specifies an lncRNA transcript. ANTSR knockdown in CSD heterozygotes leads to male development. Comparative analyses indicated that, in Hymenoptera, ANTSR is an ancient yet rapidly evolving gene. This study reveals an lncRNA involved in genetic sex determination, alongside a previously unknown regulatory mechanism underlying sex determination based on complementarity among noncoding alleles.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Laurent Keller
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, Switzerland
| |
Collapse
|
4
|
De Iorio MG, Lazzari B, Colli L, Pagnacco G, Minozzi G. Variability and Number of Circulating Complementary Sex Determiner ( Csd) Alleles in a Breeding Population of Italian Honeybees under Controlled Mating. Genes (Basel) 2024; 15:652. [PMID: 38927588 PMCID: PMC11202483 DOI: 10.3390/genes15060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
In Apis mellifera, csd is the primary gene involved in sex determination: haploid hemizygous eggs develop as drones, while females develop from eggs heterozygous for the csd gene. If diploid eggs are homozygous for the csd gene, diploid drones will develop, but will be eaten by worker bees before they are born. Therefore, high csd allelic diversity is a priority for colony survival and breeding. This study aims to investigate the variability of the hypervariable region (HVR) of the csd gene in bees sampled in an apiary under a selection scheme. To this end, an existing dataset of 100 whole-genome sequences was analyzed with a validated pipeline based on de novo assembly of sequences within the HVR region. In total, 102 allelic sequences were reconstructed and translated into amino acid sequences. Among these, 47 different alleles were identified, 44 of which had previously been observed, while 3 are novel alleles. The results show a high variability in the csd region in this breeding population of honeybees.
Collapse
Affiliation(s)
- Maria Grazia De Iorio
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy; (B.L.); (G.P.)
| | - Licia Colli
- Department of Animal, Nutrition and Food Sciences and Research Center on Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Giulio Pagnacco
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy; (B.L.); (G.P.)
| | - Giulietta Minozzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy;
| |
Collapse
|
5
|
Cheng FP, Hu XF, Pan LX, Gong ZX, Qin KX, Li Z, Wang ZL. Transcriptome changes of Apis mellifera female embryos with fem gene knockout by CRISPR/Cas9. Int J Biol Macromol 2023; 229:260-267. [PMID: 36587640 DOI: 10.1016/j.ijbiomac.2022.12.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
The sex of honey bees is decided by a regulatory cascade comprising of csd, fem and Amdsx. In order to further identify other genes involved in sex determination and differentiation of honey bees in the early stages of embryo development, the CRISPR/Cas9 method was used to knock out fem gene in the embryonic stage of diploid western honey bees, and RNA-seq was used to analyze gene expression changes in the embryo after fem knockout. Finally, we found that the bees had undergone gender changes due to fem knockout. A total of 155 differentially expressed genes (DEGs) were obtained, with 48 up-regulated and 107 down-regulated DEGs in the mutant group compared to the control group. Of them, many genes are related to sex development or differentiation. In addition, 1502 differentially expressed alternative splicing events (DEASEs) related to 1011 genes, including the main honey bee sex-determining genes csd, tra2, fem, and Amdsx, were identified between the mutant group and control group, indicating that fem regulates alternative splicing of a large number of downstream genes. Our results provide valuable clues for further investigating the molecular mechanism of sex determination and differentiation in honey bees.
Collapse
Affiliation(s)
- Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Xiao-Fen Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Lu-Xia Pan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zhi-Xian Gong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Kai-Xin Qin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, PR China.
| |
Collapse
|
6
|
Application of Next Generation Semiconductor-Based Sequencing for the Identification of Apis mellifera Complementary Sex Determiner ( csd) Alleles from Honey DNA. INSECTS 2021; 12:insects12100868. [PMID: 34680637 PMCID: PMC8536997 DOI: 10.3390/insects12100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Honey contains traces of the DNA of the honey bees that produced it. This environmental DNA can therefore be used to investigate the genome of the honey bees. In this study, we used a next generation sequencing technology to analyze the variability of a key gene of Apis mellifera L., the complementary sex determiner (csd) gene, using honey environmental DNA as a source of honey bee DNA. This gene determines the sex of the bees. Two different alleles at this locus are needed to produce females whereas males have only one copy of this gene as they are haploid. In case two identical alleles are present in a diploid individual, the larvae are not vital and are discarded by the workers. Therefore, there is an advantage in maintaining a large csd diversity in honey bee populations. In light of the recent decline in honey bee populations, it is important to monitor the allele variability at this gene. The applied methodology provided a new strategy to disclose the genetic diversity at the csd gene at the population-wide level and identify most, if not all, csd alleles present in the colonies in a single analysis. Abstract The complementary sex determiner (csd) gene plays an essential role in the sex determination of Apis mellifera L. Females develop only if fertilized eggs have functional heterozygous genotypes at this gene whereas males, being haploids, are hemizygous. Two identical csd alleles produce non vital males. In light of the recent decline in honey bee populations, it is therefore important to monitor the allele variability at this gene. In this study, we tested the application of next generation semiconductor-based sequencing technology (Ion Torrent) coupled with environmental honey DNA as a source of honey bee genome information to retrieve massive sequencing data for the analysis of variability at the hypervariable region (HVR) of the csd gene. DNA was extracted from 12 honey samples collected from honeycombs directly retrieved from 12 different colonies. A specifically designed bioinformatic pipeline, applied to analyze a total of about 1.5 million reads, identified a total of 160 different csd alleles, 55% of which were novel. The average number of alleles per sample was compatible with the number of expected patrilines per colony, according to the mating behavior of the queens. Allele diversity at the csd could also provide information useful to reconstruct the history of the honey.
Collapse
|
7
|
An Alternative, High Throughput Method to Identify Csd Alleles of the Honey Bee. INSECTS 2020; 11:insects11080483. [PMID: 32751511 PMCID: PMC7469139 DOI: 10.3390/insects11080483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/05/2022]
Abstract
Applying instrumental insemination in closely related honey bee colonies often leads to frequent lethality of offspring causing colony collapse. This is due to the peculiarities of honey bee reproductive biology, where the complementary sex determination (csd) gene drives sex determination within a haplodiploid system. Diploid drones containing homozygous genotypes are lethal. Tracking of csd alleles using molecular markers prevents this unwanted event in closed breeding programs. Our approach described here is based on high throughput sequencing (HTS) that provides more data than traditional molecular techniques and is capable of analysing sources containing multiple alleles, including diploid individuals as the bee queen. The approach combines HTS technique and clipping wings as a minimally invasive method to detect the complementary sex determiner (csd) alleles directly from honey bee queens. Furthermore, it might also be suitable for screening alleles of honey harvested from hives of a closed breeding facility. Data on alleles of the csd gene from different honey bee subspecies are provided. It might contribute to future databases that could potentially be used to track the origin of honey. With the help of tracking csd alleles, more focused crossings will be possible, which could in turn accelerate honey bee breeding programmes targeting increase tolerance against varroosis as well.
Collapse
|
8
|
Kawakami T, Wallberg A, Olsson A, Wintermantel D, de Miranda JR, Allsopp M, Rundlöf M, Webster MT. Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics 2019; 212:1101-1119. [PMID: 31152071 PMCID: PMC6707477 DOI: 10.1534/genetics.119.302008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 752 36, Sweden
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, United Kingdom
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Dimitry Wintermantel
- INRA, UE 1255 APIS, Le Magneraud, 17700 Surgères, France
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS and Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Mike Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, 7608, South Africa
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| |
Collapse
|
9
|
Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects. PLoS One 2014; 9:e91883. [PMID: 24743790 PMCID: PMC3990544 DOI: 10.1371/journal.pone.0091883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/17/2014] [Indexed: 12/23/2022] Open
Abstract
The primary signal of sex determination in the honeybee, the complementary sex determiner (csd) gene, evolved from a gene duplication event from an ancestral copy of the fem gene. Recently, other paralogs of the fem gene have been identified in several ant and bumblebee genomes. This discovery and the close phylogenetic relationship of the paralogous gene sequences led to the hypothesis of a single ancestry of the csd genetic system of complementary sex determination in the Hymenopteran insects, in which the fem and csd gene copies evolved as a unit in concert with the mutual transfers of sequences (concerted evolution). Here, we show that the paralogous gene copies evolved repeatedly through independent gene duplication events in the honeybee, bumblebee, and ant lineage. We detected no sequence tracts that would indicate a DNA transfer between the fem and the fem1/csd genes between different ant and bee species. Instead, we found tracts of duplication events in other genomic locations, suggesting that gene duplication was a frequent event in the evolution of these genes. These and other evidences suggest that the fem1/csd gene originated repeatedly through gene duplications in the bumblebee, honeybee, and ant lineages in the last 100 million years. Signatures of concerted evolution were not detectable, implicating that the gene tree based on neutral synonymous sites represents the phylogenetic relationships and origins of the fem and fem1/csd genes. Our results further imply that the fem1 and csd gene in bumblebees, honeybees, and ants are not orthologs, because they originated independently from the fem gene. Hence, the widely shared and conserved complementary sex determination mechanism in Hymenopteran insects is controlled by different genes and molecular processes. These findings highlight the limits of comparative genomics and emphasize the requirement to study gene functions in different species and major hymenopteran lineages.
Collapse
|
10
|
Beye M, Seelmann C, Gempe T, Hasselmann M, Vekemans X, Fondrk MK, Page RE. Gradual molecular evolution of a sex determination switch through incomplete penetrance of femaleness. Curr Biol 2013; 23:2559-64. [PMID: 24316208 DOI: 10.1016/j.cub.2013.10.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/30/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023]
Abstract
Some genes regulate phenotypes that are either present or absent. They are often important regulators of developmental switches and are involved in morphological evolution. We have little understanding of the molecular mechanisms by which these absence/presence gene functions have evolved, because the phenotype and fitness of molecular intermediate forms are unknown. Here, we studied the sex-determining switch of 14 natural sequence variants of the csd gene among 76 genotypes of the honeybee (Apis mellifera). Heterozygous genotypes (different specificities) of the csd gene determine femaleness, while hemizygous genotypes (single specificity) determine maleness. Homozygous genotypes of the csd gene (same specificity) are lethal. We found that at least five amino acid differences and length variation between Csd specificities in the specifying domain (PSD) were sufficient to regularly induce femaleness. We estimated that, on average, six pairwise amino acid differences evolved under positive selection. We also identified a natural evolutionary intermediate that showed only three amino acid length differences in the PSD relative to its parental allele. This genotype showed an intermediate fitness because it implemented lethality regularly and induced femaleness infrequently (i.e., incomplete penetrance). We suggest incomplete penetrance as a mechanism through which new molecular switches can gradually and adaptively evolve.
Collapse
Affiliation(s)
- Martin Beye
- Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Christine Seelmann
- Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Tanja Gempe
- Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Martin Hasselmann
- Institute of Genetics, University of Cologne, Zuelpicher Straße 47, 50674 Koeln, Germany
| | - Xavier Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR 8198, CNRS, Université Lille 1, 59655 Villeneuve d'Ascq, France
| | - M Kim Fondrk
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Robert E Page
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Lechner S, Ferretti L, Schöning C, Kinuthia W, Willemsen D, Hasselmann M. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera. Mol Biol Evol 2013; 31:272-87. [PMID: 24170493 PMCID: PMC3907057 DOI: 10.1093/molbev/mst207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.
Collapse
Affiliation(s)
- Sarah Lechner
- Institute of Evolutionary Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Mougel F, Poursat MA, Beaume N, Vautrin D, Solignac M. High-resolution linkage map for two honeybee chromosomes: the hotspot quest. Mol Genet Genomics 2013; 289:11-24. [PMID: 24162559 DOI: 10.1007/s00438-013-0784-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
Meiotic recombination is a fundamental process ensuring proper disjunction of homologous chromosomes and allele shuffling in successive generations. In many species, this cellular mechanism occurs heterogeneously along chromosomes and mostly concentrates in tiny fragments called recombination hotspots. Specific DNA motifs have been shown to initiate recombination in these hotspots in mammals, fission yeast and drosophila. The aim of this study was to check whether recombination also occurs in a heterogeneous fashion in the highly recombinogenic honeybee genome and whether this heterogeneity can be connected with specific DNA motifs. We completed a previous picture drawn from a routine genetic map built with an average resolution of 93 kb. We focused on the two smallest honeybee chromosomes to increase the resolution and even zoomed at very high resolution (3.6 kb) on a fragment of 300 kb. Recombination rates measured in these fragments were placed in relation with occurrence of 30 previously described motifs through a Poisson regression model. A selection procedure suitable for correlated variables was applied to keep significant motifs. These fine and ultra-fine mappings show that recombination rate is significantly heterogeneous although poorly contrasted between high and low recombination rate, contrarily to most model species. We show that recombination rate is probably associated with the DNA methylation state. Moreover, three motifs (CGCA, GCCGC and CCAAT) are good candidates of signals promoting recombination. Their influence is however moderate, doubling at most the recombination rate. This discovery extends the way to recombination dissection in insects.
Collapse
Affiliation(s)
- Florence Mougel
- Laboratoire Evolution Génomes Spéciation, CNRS, avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France,
| | | | | | | | | |
Collapse
|
13
|
Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, Fragaria vesca ssp. bracteata (Rosaceae). G3-GENES GENOMES GENETICS 2013; 3:1341-51. [PMID: 23749450 PMCID: PMC3737174 DOI: 10.1534/g3.113.006288] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gynodioecy is a sexual system wherein females coexist with hermaphrodites. It is of interest not only because male-sterile plants are advantageous in plant breeding but also because it can be a crucial step in the evolutionary transition to entirely separate sexes (dioecy) from a hermaphroditic ancestor. The gynodioecious diploid wild strawberry, Fragaria vesca ssp. bracteata (Rosaceae), is a member of a clade with both dioecious and cultivated species, making it an ideal model in which to study the genetics of male sterility. To create a genetic map of F. v. ssp. bracteata, we identified informative polymorphisms from genomic sequencing (3−5x coverage) of two outbred plants from the same population. Using targeted enrichment, we sequenced 200 bp surrounding each of 6575 polymorphisms in 48 F1 offspring, yielding genotypes at 98% of targeted sites with mean coverage >100x, plus more than 600-kb high-coverage nontargeted sequence. With the resulting linkage map of 7802 stringently filtered markers (5417 targeted), we assessed recombination rates and genomic incongruities. Consistent with past work in strawberries, male sterility is dominant, segregates 1:1, and maps to a single location in the female. Further mapping an additional 55 offspring places male sterility in a gene-dense, 338-kb region of chromosome 4. The region is not syntenic with the sex-determining regions in the closely related octoploids, F. chiloensis and F. virginiana, suggesting either independent origins or translocation. The 57 genes in this region do not include protein families known to control male sterility and thus suggest alternate mechanisms for the suppression of male function.
Collapse
|
14
|
Liu ZY, Wang ZL, Yan WY, Wu XB, Zeng ZJ, Huang ZY. The sex determination gene shows no founder effect in the giant honey bee, Apis dorsata. PLoS One 2012; 7:e34436. [PMID: 22511940 PMCID: PMC3325241 DOI: 10.1371/journal.pone.0034436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 03/05/2012] [Indexed: 11/23/2022] Open
Abstract
Background All honey bee species (Apis spp) share the same sex determination mechanism using the complementary sex determination (csd) gene. Only individuals heterogeneous at the csd allele develop into females, and the homozygous develop into diploid males, which do not survive. The honeybees are therefore under selection pressure to generate new csd alleles. Previous studies have shown that the csd gene is under balancing selection. We hypothesize that due to the long separation from the mainland of Hainan Island, China, that the giant honey bees (Apis dorsata) should show a founder effect for the csd gene, with many different alleles clustered together, and these would be absent on the mainland. Methodology/Principal Findings We sampled A. dorsata workers from both Hainan and Guangxi Provinces and then cloned and sequenced region 3 of the csd gene and constructed phylogenetic trees. We failed to find any clustering of the csd alleles according to their geographical origin, i.e. the Hainan and Guangxi samples did not form separate clades. Further analysis by including previously published csd sequences also failed to show any clade-forming in both the Philippines and Malaysia. Conclusions/Significance Results from this study and those from previous studies did not support the expectations of a founder effect. We conclude that because of the extremely high mating frequency of A. dorsata queens, a founder effect does not apply in this species.
Collapse
Affiliation(s)
- Zhi Yong Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Experimental Animal Center, Institute of Occupational Disease Prevention, Nanchang, China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- * E-mail: ; (ZYH)
| | - Zachary Y. Huang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: ; (ZYH)
| |
Collapse
|
15
|
Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl AC, Fobis-Loisy I, Vekemans X, Castric V. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 2012; 8:e1002495. [PMID: 22457631 PMCID: PMC3310759 DOI: 10.1371/journal.pgen.1002495] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae. Self-incompatibility is a common genetic system preventing selfing through recognition and rejection of self-pollen in hermaphroditic flowering plants. In the Brassicaceae family, this system is controlled by a single genomic region, called the S-locus, where many distinct specificities segregate in natural populations. In this study, we obtained genomic sequences comprising the S-locus in two closely related Brassicaceae species, Arabidopsis lyrata and A. halleri, and analyzed their diversity and patterns of molecular evolution. We report compelling evidence that the S-locus presents many similar properties with other genomic regions involved in the determination of mating-types in mammals, insects, plants, or fungi. In particular, in spite of their diversity, these genomic regions all show absence of similarity in intergenic sequences, large depth of genealogies, highly divergent organization, and accumulation of transposable elements. Moreover, some of these features were found to vary according to dominance of the S-locus specificities, suggesting that dominance/recessivity interactions are key drivers of the evolution of this genomic region.
Collapse
Affiliation(s)
- Pauline M. Goubet
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Nicolas Helmstetter
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Sophie Mangenot
- Genoscope, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Sophie Gallina
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Anne-Catherine Holl
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Vekemans
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Vincent Castric
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
16
|
Frankham R. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity (Edinb) 2012; 108:167-78. [PMID: 21878983 PMCID: PMC3282390 DOI: 10.1038/hdy.2011.66] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022] Open
Abstract
Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.
Collapse
Affiliation(s)
- R Frankham
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Abstract
Animals have evolved a bewildering diversity of mechanisms to determine the two sexes. Studies of sex determination genes – their history and function – in non-model insects and Drosophila have allowed us to begin to understand the generation of sex determination diversity. One common theme from these studies is that evolved mechanisms produce activities in either males or females to control a shared gene switch that regulates sexual development. Only a few small-scale changes in existing and duplicated genes are sufficient to generate large differences in sex determination systems. This review summarises recent findings in insects, surveys evidence of how and why sex determination mechanisms can change rapidly and suggests fruitful areas of future research.
Collapse
Affiliation(s)
- Tanja Gempe
- Department of Genetics, Heinrich Heine University, Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | | |
Collapse
|
18
|
Wang Z, Liu Z, Wu X, Yan W, Zeng Z. Polymorphism analysis of csd gene in six Apis mellifera subspecies. Mol Biol Rep 2011; 39:3067-71. [PMID: 21687972 DOI: 10.1007/s11033-011-1069-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
The complementary sex determination (csd) gene is the primary gene determining the gender of honey bees (Apis spp). In this study we analyzed the polymorphism of csd gene in six Apis mellifera subspecies. The genomic region 3 of csd gene in these six A. mellifera was cloned, and identified. A total of 79 haplotypes were obtained from these six subspecies. Analysis showed that region 3 of csd gene has a high level of polymorphism in all the six A. mellifera subspecies. The A. m. anatolica subspecies has a slightly higher nucleotide diversity (π) than other subspecies, while the π values showed no significant difference among the other five subspecies. The phylogenetic tree showed that all the csd haplotypes from different A. mellifera subspecies are scattered throughout the tree, without forming six different clades. Population differentiation analysis showed that there are significant genetic differentiations among some of the subspecies. The NJ phylogenetic tree showed that the A. m. caucasica and A. m. carnica have the closest relationship, followed by A. m. ssp, A. m. ligustica, A. m. carpatica and A. m. anatolica that were gathered in the tree in turn.
Collapse
Affiliation(s)
- Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi, China
| | | | | | | | | |
Collapse
|
19
|
Oldroyd BP, Allsopp MH, Lim J, Beekman M. A thelytokous lineage of socially parasitic honey bees has retained heterozygosity despite at least 10 years of inbreeding. Evolution 2010; 65:860-8. [PMID: 21044063 DOI: 10.1111/j.1558-5646.2010.01164.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The honey bee population of South Africa is divided into two subspecies: a northern population in which queenless workers reproduce arrhenotokously and a southern one in which workers reproduce thelytokously. A hybrid zone separates the two, but on at least three occasions the northern population has become infested by reproductive workers derived from the southern population. These parasitic workers lay in host colonies parthenogenetically, resulting in yet more parasites. The current infestation is 20-year old--surprising because an asexual lineage is expected to show a decline in vigor over time due to increasing homozygosity. The decline is expected to be acute in honey bees, where homozygosity at the sex locus is lethal. We surveyed colonies from the zone of infestation and genotyped putative parasites at two sets of linked microsatellite loci. We confirm that there is a single clonal lineage of parasites that shows minor variations arising from recombination events. The lineage shows high levels of heterozygosity, which may be maintained by selection against homozygotes, or by a reduction in recombination frequency within the lineage. We suggest that the clonal lineage can endure the costs of asexual reproduction because of the fitness benefits of its parasitic life history.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
20
|
Origin of a function by tandem gene duplication limits the evolutionary capability of its sister copy. Proc Natl Acad Sci U S A 2010; 107:13378-83. [PMID: 20624976 DOI: 10.1073/pnas.1005617107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The most remarkable outcome of a gene duplication event is the evolution of a novel function. Little information exists on how the rise of a novel function affects the evolution of its paralogous sister gene copy, however. We studied the evolution of the feminizer (fem) gene from which the gene complementary sex determiner (csd) recently derived by tandem duplication within the honey bee (Apis) lineage. Previous studies showed that fem retained its sex determination function, whereas the rise of csd established a new primary signal of sex determination. We observed a specific reduction of nonsynonymous to synonymous substitution ratios in Apis to non-Apis fem. We found a contrasting pattern at two other genetically linked genes, suggesting that hitchhiking effects to csd, the locus under balancing selection, is not the cause of this evolutionary pattern. We also excluded higher synonymous substitution rates by relative rate testing. These results imply that stronger purifying selection is operating at the fem gene in the presence of csd. We propose that csd's new function interferes with the function of Fem protein, resulting in molecular constraints and limited evolvability of fem in the Apis lineage. Elevated silent nucleotide polymorphism in fem relative to the genome-wide average suggests that genetic linkage to the csd gene maintained more nucleotide variation in today's population. Our findings provide evidence that csd functionally and genetically interferes with fem, suggesting that a newly evolved gene and its functions can limit the evolutionary capability of other genes in the genome.
Collapse
|
21
|
Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biol 2009; 7:e1000222. [PMID: 19841734 PMCID: PMC2758576 DOI: 10.1371/journal.pbio.1000222] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022] Open
Abstract
Sex determination in honeybees is realized by the csd and the fem gene that establish and maintain, throughout development, sexual fates via the control of alternative splicing. Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene. Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential for entire female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males to demonstrate that the female maintenance mechanism is controlled by a positive feedback splicing loop in which Fem proteins mediate their own synthesis by directing female fem mRNA splicing. The csd gene is only necessary to induce this positive feedback loop in early embryogenesis by directing splicing of fem mRNAs. Finally, fem also controls the splicing of Am-doublesex transcripts encoding conserved male- and female-specific transcription factors involved in sexual differentiation. Our findings reveal how the sex determination process is realized in honeybees differing from Drosophila melanogaster. Sexual differentiation is a fundamental process in the animal kingdom, and different species have evolved a bewildering diversity of mechanisms to generate the two sexes in the proper proportions. Sex determination in honeybees (Apis mellifera) provides an interesting and unusual system to study, as it is governed by heterozygosity of a single locus harbouring the complementary sex determiner gene (csd), in contrast to the well-studied sex chromosome system of Drosophila melanogaster. We show that the female sex determination pathway is exclusively induced by the csd gene in early embryogenesis. Later on and throughout development this inductive signal is maintained via a positive feedback loop of the feminizer (fem) gene, in which the Fem protein mediates its own synthesis. The findings reveal how the sex determination process in honeybees is realized by the regulation and function of two genes differing from Drosophila.
Collapse
Affiliation(s)
- Tanja Gempe
- Department of Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Martin Hasselmann
- Department of Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Morten Schiøtt
- Department of Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Department of Population Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gerd Hause
- Biozentrum, Martin-Luther-Universitaet, Halle-Wittenberg, Halle, Germany
| | - Marianne Otte
- Department of Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Martin Beye
- Department of Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
22
|
de Boer JG, Ode PJ, Rendahl AK, Vet LEM, Whitfield JB, Heimpel GE. Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis. Genetics 2008; 180:1525-35. [PMID: 18791258 PMCID: PMC2581954 DOI: 10.1534/genetics.107.083907] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 08/22/2008] [Indexed: 11/18/2022] Open
Abstract
Despite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, with haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination. Some hymenopteran insect species exhibit single-locus complementary sex determination (sl-CSD), where heterozygosity at a polymorphic sex locus initiates female development. Diploid males are homozygous at the sex locus and represent a genetic load because they are inviable or sterile. Inbreeding depression associated with CSD is therefore expected to select for other modes of sex determination resulting in fewer or no diploid males. Here, we investigate an alternative, heretofore hypothetical, mode of sex determination: multiple-locus CSD (ml-CSD). Under ml-CSD, diploid males are predicted to develop only from zygotes that are homozygous at all sex loci. We show that inbreeding for eight generations in the parasitoid wasp Cotesia vestalis leads to increasing proportions of diploid males, a pattern that is consistent with ml-CSD but not sl-CSD. The proportion of diploid males (0.27 +/- 0.036) produced in the first generation of inbreeding (mother-son cross) suggests that two loci are likely involved. We also modeled diploid male production under CSD with three linked loci. Our data visually resemble CSD with linked loci because diploid male production in the second generation was lower than that in the first. To our knowledge, our data provide the first experimental support for ml-CSD.
Collapse
Affiliation(s)
- Jetske G de Boer
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In several insects and fish, and probably some mammals, the gene controlling the male-female switch has changed during evolution. It now seems that this has also happened in honeybees, where the sex-determining gene has now been shown to be a duplicate of another Hymenopteran sex-determining gene.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Lab. King's Buildings, W. Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
24
|
Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): central fusion and high recombination rates. Genetics 2008; 180:359-66. [PMID: 18716331 DOI: 10.1534/genetics.108.090415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum.
Collapse
|
25
|
Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 2008; 454:519-22. [PMID: 18594516 DOI: 10.1038/nature07052] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 05/01/2008] [Indexed: 11/08/2022]
Abstract
Sex determination in honeybees (Apis mellifera) is governed by heterozygosity at a single locus harbouring the complementary sex determiner (csd) gene, in contrast to the well-studied sex chromosome system of Drosophila melanogaster. Bees heterozygous at csd are females, whereas homozygotes and hemizygotes (haploid individuals) are males. Although at least 15 different csd alleles are known among natural bee populations, the mechanisms linking allelic interactions to switching of the sexual development programme are still obscure. Here we report a new component of the sex-determining pathway in honeybees, encoded 12 kilobases upstream of csd. The gene feminizer (fem) is the ancestrally conserved progenitor gene from which csd arose and encodes an SR-type protein, harbouring an Arg/Ser-rich domain. Fem shares the same arrangement of Arg/Ser- and proline-rich-domain with the Drosophila principal sex-determining gene transformer (tra), but lacks conserved motifs except for a 30-amino-acid motif that Fem shares only with Tra of another fly, Ceratitis capitata. Like tra, the fem transcript is alternatively spliced. The male-specific splice variant contains a premature stop codon and yields no functional product, whereas the female-specific splice variant encodes the functional protein. We show that RNA interference (RNAi)-induced knockdowns of the female-specific fem splice variant result in male bees, indicating that the fem product is required for entire female development. Furthermore, RNAi-induced knockdowns of female allelic csd transcripts result in the male-specific fem splice variant, suggesting that the fem gene implements the switch of developmental pathways controlled by heterozygosity at csd. Comparative analysis of fem and csd coding sequences from five bee species indicates a recent origin of csd in the honeybee lineage from the fem progenitor and provides evidence for positive selection at csd accompanied by purifying selection at fem. The fem locus in bees uncovers gene duplication and positive selection as evolutionary mechanisms underlying the origin of a novel sex determination pathway.
Collapse
|
26
|
Schierup MH, Vekemans X. Genomic consequences of selection on self-incompatibility genes. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:116-122. [PMID: 18316239 DOI: 10.1016/j.pbi.2008.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 05/26/2023]
Abstract
Frequency-dependent selection at plant self-incompatibility systems is inherent and well understood theoretically. A self-incompatibility locus leads to a strong peak of diversity in the genome, to a unique distribution of diversity across the species and possibly to increased introgression between closely related species. We review recent empirical studies demonstrating these features and relate the empirical findings to theoretical predictions. We show how these features are being exploited in searches for other genes under multi-allelic balancing selection and for inference on recent breakdown of self-incompatibility.
Collapse
Affiliation(s)
- Mikkel Heide Schierup
- Bioinformatics Research Center and Department of Biology, University of Aarhus, Hoegh Guldbergs Gade 10, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
27
|
Abstract
The dominant and ancestral mode of sex determination in the Hymenoptera is arrhenotokous parthenogenesis, in which diploid females develop from fertilized eggs and haploid males develop from unfertilized eggs. We discuss recent progress in the understanding of the genetic and cytoplasmic mechanisms that make arrhenotoky possible. The best-understood mode of sex determination in the Hymenoptera is complementary sex determination (CSD), in which diploid males are produced under conditions of inbreeding. The gene mediating CSD has recently been cloned in the honey bee and has been named the complementary sex determiner. However, CSD is only known from 4 of 21 hymenopteran superfamilies, with some taxa showing clear evidence of the absence of CSD. Sex determination in the model hymenopteran Nasonia vitripennis does not involve CSD, but it is consistent with a form of genomic imprinting in which activation of the female developmental pathway requires paternally derived genes. Some other hymenopterans are not arrhenotokous but instead exhibit thelytoky or paternal genome elimination.
Collapse
Affiliation(s)
- George E Heimpel
- Department of Entomology, University of Minnesota, St Paul, MN, USA.
| | | |
Collapse
|