1
|
Kelleher ES, Azevedo RBR, Zheng Y. The Evolution of Small-RNA-Mediated Silencing of an Invading Transposable Element. Genome Biol Evol 2018; 10:3038-3057. [PMID: 30252073 PMCID: PMC6404463 DOI: 10.1093/gbe/evy218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are genomic parasites that impose fitness costs on their
hosts by producing deleterious mutations and disrupting gametogenesis. Host genomes avoid
these costs by regulating TE activity, particularly in germline cells where new insertions
are heritable and TEs are exceptionally active. However, the capacity of different
TE-associated fitness costs to select for repression in the host, and the role of
selection in the evolution of TE regulation more generally remain controversial. In this
study, we use forward, individual-based simulations to examine the evolution of
small-RNA-mediated TE regulation, a conserved mechanism for TE repression that is employed
by both prokaryotes and eukaryotes. To design and parameterize a biologically realistic
model, we drew on an extensive survey of empirical studies of the transposition and
regulation of P-element DNA transposons in Drosophila
melanogaster. We observed that even under conservative assumptions, where
small-RNA-mediated regulation reduces transposition only, repression evolves rapidly and
adaptively after the genome is invaded by a new TE in simulated populations. We further
show that the spread of repressor alleles through simulated populations is greatly
enhanced by two additional TE-imposed fitness costs: dysgenic sterility and ectopic
recombination. Finally, we demonstrate that the adaptive mutation rate to repression is a
critical parameter that influences both the evolutionary trajectory of host repression and
the associated proliferation of TEs after invasion in simulated populations. Our findings
suggest that adaptive evolution of TE regulation may be stronger and more prevalent than
previously appreciated, and provide a framework for interpreting empirical data.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston
| | | | - Yichen Zheng
- Department of Biology and Biochemistry, University of Houston, Houston.,Biodiversitt und Klima Forschungszentrum, Senckenberg Gesellschaft fr Naturforschung, Frankfurt am Main, Germany.,Institute of Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| |
Collapse
|
2
|
Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics 2017; 203:1513-31. [PMID: 27516614 DOI: 10.1534/genetics.115.184119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression.
Collapse
|
3
|
Paternal Induction of Hybrid Dysgenesis in Drosophila melanogaster Is Weakly Correlated with Both P-Element and hobo Element Dosage. G3-GENES GENOMES GENETICS 2017; 7:1487-1497. [PMID: 28315830 PMCID: PMC5427502 DOI: 10.1534/g3.117.040634] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposable elements (TEs) are virtually ubiquitous components of genomes, yet they often impose significant fitness consequences on their hosts. In addition to producing specific deleterious mutations by insertional inactivation, TEs also impose general fitness costs by inducing DNA damage and participating in ectopic recombination. These latter fitness costs are often assumed to be dosage-dependent, with stronger effects occurring in the presence of higher TE copy numbers. We test this assumption in Drosophila melanogaster by considering the relationship between the copy number of two active DNA transposons, P-element and hobo element, and the incidence of hybrid dysgenesis, a sterility syndrome associated with transposon activity in the germline. By harnessing a subset of the Drosophila Genetic Reference Panel (DGRP), a group of fully-sequenced D. melanogaster strains, we describe quantitative and structural variation in P-elements and hobo elements among wild-derived genomes and associate these factors with hybrid dysgenesis. We find that the incidence of hybrid dysgenesis is associated with both P-element and hobo element copy number in a dosage-dependent manner. However, the relationship is weak for both TEs, suggesting that dosage alone explains only a small part of TE-associated fitness costs.
Collapse
|
4
|
Simmons MJ, Grimes CD, Czora CS. Cytotype Regulation Facilitates Repression of Hybrid Dysgenesis by Naturally Occurring KP Elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:1891-7. [PMID: 27172198 PMCID: PMC4938643 DOI: 10.1534/g3.116.028597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
P elements inserted in the Telomere Associated Sequences (TAS) at the left end of the X chromosome are determiners of cytotype regulation of the entire P family of transposons. This regulation is mediated by Piwi-interacting (pi) RNAs derived from the telomeric P elements (TPs). Because these piRNAs are transmitted maternally, cytotype regulation is manifested as a maternal effect of the TPs. When a TP is combined with a transgenic P element inserted at another locus, this maternal effect is strengthened. However, when certain TPs are combined with transgenes that contain the small P element known as KP, stronger regulation arises from a zygotic effect of the KP element. This zygotic effect is observed with transgenic KP elements that are structurally intact, as well as with KP elements that are fused to an ancillary promoter from the hsp70 gene. Zygotic regulation by a KP element occurs only when a TP was present in the maternal germ line, and it is more pronounced when the TP was also present in the grand-maternal germ line. However, this regulation does not require zygotic expression of the TP These observations can be explained if maternally transmitted piRNAs from TPs enable a polypeptide encoded by KP elements to repress P element transposition in zygotes that contain a KP element. In nature, repression by the KP polypeptide may therefore be facilitated by cytotype-mediating piRNAs.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Craig D Grimes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Cody S Czora
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
5
|
Majumdar S, Rio DC. P Transposable Elements in Drosophila and other Eukaryotic Organisms. Microbiol Spectr 2015; 3:MDNA3-0004-2014. [PMID: 26104714 PMCID: PMC4399808 DOI: 10.1128/microbiolspec.mdna3-0004-2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/20/2022] Open
Abstract
P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins.
Collapse
Affiliation(s)
| | - Donald C. Rio
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, CA 94720-3204
| |
Collapse
|
6
|
Simmons MJ, Thorp MW, Buschette JT, Becker JR. Transposon regulation in Drosophila: piRNA-producing P elements facilitate repression of hybrid dysgenesis by a P element that encodes a repressor polypeptide. Mol Genet Genomics 2014; 290:127-40. [DOI: 10.1007/s00438-014-0902-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
7
|
Simmons MJ, Meeks MW, Jessen E, Becker JR, Buschette JT, Thorp MW. Genetic interactions between P elements involved in piRNA-mediated repression of hybrid dysgenesis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2014; 4:1417-27. [PMID: 24902606 PMCID: PMC4132173 DOI: 10.1534/g3.114.011221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that telomeric P elements inserted at the left end of the X chromosome are anchors of the P cytotype, the maternally inherited state that regulates P-element activity in the germ line of Drosophila melanogaster. This regulation is mediated by small RNAs that associate with the Piwi family of proteins (piRNAs). We extend the analysis of cytotype regulation by studying new combinations of telomeric and nontelomeric P elements (TPs and non-TPs). TPs interact with each other to enhance cytotype regulation. This synergism involves a strictly maternal effect, called presetting, which is apparently mediated by piRNAs transmitted through the egg. Presetting by a maternal TP can elicit regulation by an inactive paternally inherited TP, possibly by stimulating its production of primary piRNAs. When one TP has come from a stock heterozygous for a mutation in the aubergine, piwi, or Suppressor of variegation 205 genes, the synergism between two TPs is impaired. TPs also interact with non-TPs to enhance cytotype regulation, even though the non-TPs lack regulatory ability on their own. Non-TPs are not susceptible to presetting by a TP, nor is a TP susceptible to presetting by a non-TP. The synergism between TPs and non-TPs is stronger when the TP was inherited maternally. This synergism may be due to the accumulation of secondary piRNAs created by ping-pong cycling between primary piRNAs from the TPs and mRNAs from the non-TPs. Maternal transmission of P-element piRNAs plays an important role in the maintenance of strong cytotype regulation over generations.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Marshall W Meeks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Erik Jessen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jordan R Becker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jared T Buschette
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Michael W Thorp
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
8
|
Maternal enhancement of cytotype regulation in Drosophila melanogaster by genetic interactions between telomeric P elements and non-telomeric transgenic P elements. Genet Res (Camb) 2013; 94:339-51. [PMID: 23374243 DOI: 10.1017/s0016672312000523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The X-linked telomeric P elements (TPs) TP5 and TP6 regulate the activity of the entire P element family because they are inserted in a major locus for the production of Piwi-interacting RNAs (piRNAs). The potential for this cytotype regulation is significantly strengthened when either TP5 or TP6 is combined with a non-telomeric X-linked or autosomal transgene that contains a P element. By themselves, none of the transgenic P elements have any regulatory ability. Synergism between the telomeric and transgenic P elements is much greater when the TP is derived from a female. Once an enhanced regulatory state is established in a female, it is transmitted to her offspring independently of either the telomeric or transgenic P elements - that is, it works through a strictly maternal effect. Synergistic regulation collapses when either the telomeric or the transgenic P element is removed from the maternal genotype, and it is significantly impaired when the TPs come from stocks heterozygous for mutations in the genes aubergine, piwi or Su(var)205. The synergism between telomeric and transgenic P elements is consistent with a model in which P piRNAs are amplified by alternating, or ping-pong, targeting of primary piRNAs to sense and antisense P transcripts, with the sense transcripts being derived from the transgenic P element and the antisense transcripts being derived from the TP.
Collapse
|
9
|
Merriman PJ, Simmons MJ. A test for enhancement of cytotype regulation in Drosophila melanogaster by the transposase-encoding P element ∆2-3. Mol Genet Genomics 2013; 288:535-47. [PMID: 23925475 DOI: 10.1007/s00438-013-0772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
Transposable P elements are regulated in the germ line by piRNAs, which are small RNAs that associate with the Piwi class of proteins. This regulation, called the P cytotype, is enhanced by genetic interactions between P elements that are primary sources of these RNAs and other P elements. The enhanced regulation is thought to reflect amplification of the primary piRNAs by cleavage of mRNAs derived from the other P elements through a mechanism called the ping-pong cycle. We tested the transposase-encoding P element known as ∆2-3 for its ability to enhance cytotype regulation anchored in P elements inserted at the telomere of the left arm of the X chromosome (TP elements). The ∆2-3 P element lacks the intron between exons 2 and 3 in the structurally complete P element (CP). Unlike the CP element, it does not markedly enhance cytotype regulation anchored in TP elements, nor does it transmit transposase activity through the egg cytoplasm. However, mRNAs from both the CP and ∆2-3 elements are maternally deposited in embryos. These observations suggest that maternally transmitted CP mRNA enhances cytotype regulation by participating in the ping-pong cycle and that it encodes the P transposase in the embryonic germ line, whereas maternally transmitted ∆2-3 mRNA does not, possibly because it is not efficiently directed into the primordial embryonic germ line. Strong transposon regulation may, therefore, require ping-pong cycling with maternally inherited mRNAs in the embryo.
Collapse
Affiliation(s)
- Peter J Merriman
- Department of Genetics, Cell Biology and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN, 55108-1095, USA
| | | |
Collapse
|
10
|
Hodgetts RB, O'Keefe SL, Anderson KJ. An intact RNA interference pathway is required for expression of the mutant wing phenotype of vg(21-3), a P-element-induced allele of the vestigial gene in Drosophila. Genome 2012; 55:312-26. [PMID: 22452576 DOI: 10.1139/g2012-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have determined that two P elements, P[21-3] and P[21r36], residing in the 5'-UTR of the vestigial wing gene, encode functional repressors in eye tissue. However, neither element fits a previous categorization of repressor-making elements as Type I or II. Both elements encode polypeptides that are shorter than the canonical elements they most closely resemble. DNA sequencing reveals that P[21r36] encodes an intact THAP domain that is missing in the P[21] element, which does not encode a functional repressor. Recovery of P[21-3] at sites other than vestigial (where it causes the wing mutant, vg(21-3)) reveals that the element can make repressor in wing tissue of sufficient activity to repress the mutant phenotype of vg(21-3). Why the P[21-3] element fails to produce repressor when located at vestigial may be explained by our observation that three different mutants in the RNA interference pathway cause a partial reversion of vg(21-3). We speculate that the vg and P-initiated transcripts that arise at the vg locus in the vg(21-3) mutant trigger an RNA interference response that results in the mutual degradation of both transcripts.
Collapse
Affiliation(s)
- Ross B Hodgetts
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
11
|
Cytotype regulation by telomeric P elements in Drosophila melanogaster: variation in regulatory strength and maternal effects. Genet Res (Camb) 2010; 91:327-36. [PMID: 19922696 DOI: 10.1017/s001667230999022x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Strains carrying the X-linked telomeric P elements TP5 or TP6 varied in their ability to repress hybrid dysgenesis. The rank ordering of these strains was consistent across different genetic assays and was not related to the type of telomeric P element (TP5 or TP6) present. Strong repression of dysgenesis was associated with weak expression of mRNA from the telomeric P element and also with a reduced amount of mRNA from a transposase-producing P element contained within a transgene inserted on an autosome. A strictly maternal component of repression, transmitted independently of the telomeric P element, was detected in the daughters but not the sons of females from the strongest repressing strains. However, this effect was seen only when dysgenesis was induced by crossing these females to males from a P strain, not when it was induced by crossing them to males homozygous for a single transposase-producing P element contained within a transgene. These findings are consistent with the hypothesis that the P cytotype, the condition that regulates P elements, involves an RNA interference mechanism mediated by piRNAs produced by telomeric P elements such as TP5 and TP6 and amplified by RNAs produced by other P elements.
Collapse
|
12
|
Cytotype regulation inDrosophila melanogaster: synergism between telomeric and non-telomericPelements. Genet Res (Camb) 2010; 91:383-94. [PMID: 20122295 DOI: 10.1017/s0016672309990322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryThe X-linked telomericPelementsTP5andTP6interact synergistically with non-telomericPelements to repress hybrid dysgenesis. In this repression, the telomericPelements exert maternal effects, which, however, are not sufficient to establish synergism with the non-telomericPelements. Once synergism is established, the capacity to repress dysgenesis in the offspring of a cross persists for at least two generations after removing the telomericPelement from the genotype. At the molecular level, synergism between telomeric and non-telomericPelements is correlated with effective elimination ofP-element mRNA in the germ line. Maternally transmitted mutations in the genesaubergine,piwiandSuppressor of variegation 205[Su(var)205] block the establishment of synergism between telomeric and non-telomericPelements, and paternally transmitted mutations inpiwiandSu(var)205disrupt synergism that has already been established. These findings are discussed in terms of a model of cytotype regulation ofPelements based on Piwi-interacting RNAs (piRNAs) that are amplified by cycling between sense and antisense species.
Collapse
|
13
|
Jensen PA, Stuart JR, Goodpaster MP, Goodman JW, Simmons MJ. Cytotype regulation of P transposable elements in Drosophila melanogaster: repressor polypeptides or piRNAs? Genetics 2008; 179:1785-93. [PMID: 18579507 PMCID: PMC2516058 DOI: 10.1534/genetics.108.087072] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 05/15/2008] [Indexed: 11/18/2022] Open
Abstract
The telomeric P elements TP5 and TP6 are associated with the P cytotype, a maternally inherited condition that represses P-element-induced hybrid dysgenesis in the Drosophila germ line. To see if cytotype repression by TP5 and TP6 might be mediated by the polypeptides they could encode, hobo transgenes carrying these elements were tested for expression of mRNA in the female germ line and for repression of hybrid dysgenesis. The TP5 and TP6 transgenes expressed more germ-line mRNA than the native telomeric P elements, but they were decidedly inferior to the native elements in their ability to repress hybrid dysgenesis. These paradoxical results are inconsistent with the repressor polypeptide model of cytotype. An alternative model based on the destruction of P transposase mRNA by Piwi-interacting (pi) RNAs was supported by finding reduced P mRNA levels in flies that carried the native telomeric P elements, which are inserted in a known major piRNA locus.
Collapse
Affiliation(s)
- Philip A Jensen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095, USA
| | | | | | | | | |
Collapse
|
14
|
Simmons MJ, Ryzek DF, Lamour C, Goodman JW, Kummer NE, Merriman PJ. Cytotype regulation by telomeric P elements in Drosophila melanogaster: evidence for involvement of an RNA interference gene. Genetics 2007; 176:1945-55. [PMID: 17603126 PMCID: PMC1950604 DOI: 10.1534/genetics.106.066746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 04/23/2007] [Indexed: 11/18/2022] Open
Abstract
P elements inserted at the left telomere of the X chromosome evoke the P cytotype, a maternally inherited condition that regulates the P-element family in the Drosophila germline. This regulation is completely disrupted in stocks heterozygous for mutations in aubergine, a gene whose protein product is involved in RNA interference. However, cytotype is not disrupted in stocks heterozygous for mutations in two other RNAi genes, piwi and homeless (spindle-E), or in a stock heterozygous for a mutation in the chromatin protein gene Enhancer of zeste. aubergine mutations exert their effects in the female germline, where the P cytotype is normally established and through which it is maintained. These effects are transmitted maternally to offspring of both sexes independently of the mutations themselves. Lines derived from mutant aubergine stocks reestablish the P cytotype quickly, unlike lines derived from stocks heterozygous for a mutation in Suppressor of variegation 205, the gene that encodes the telomere-capping protein HP1. Cytotype regulation by telomeric P elements may be tied to a system that uses RNAi to regulate the activities of telomeric retrotransposons in Drosophila.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108-1095, USA.
| | | | | | | | | | | |
Collapse
|