1
|
Sosa Ponce ML, Moradi-Fard S, Zaremberg V, Cobb JA. SUNny Ways: The Role of the SUN-Domain Protein Mps3 Bridging Yeast Nuclear Organization and Lipid Homeostasis. Front Genet 2020; 11:136. [PMID: 32184804 PMCID: PMC7058695 DOI: 10.3389/fgene.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer.
Collapse
Affiliation(s)
- Maria Laura Sosa Ponce
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
2
|
Di Stefano M, Di Giovanni F, Pozharskaia V, Gomar-Alba M, Baù D, Carey LB, Marti-Renom MA, Mendoza M. Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast. Genetics 2020; 214:651-667. [PMID: 31907200 PMCID: PMC7054015 DOI: 10.1534/genetics.119.302978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/01/2020] [Indexed: 12/03/2022] Open
Abstract
The three-dimensional (3D) organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects remain debated. To determine how changes in chromosome positioning affect transcription across thousands of genes with minimal perturbation, we characterized nuclear organization and global gene expression in budding yeast containing chromosome fusions. We used computational modeling and single-cell imaging to determine chromosome positions, and integrated these data with genome-wide transcriptional profiles from RNA sequencing. We find that chromosome fusions dramatically alter 3D nuclear organization without leading to strong genome-wide changes in transcription. However, we observe a mild but significant and reproducible increase in the expression of genes displaced away from the periphery. The increase in transcription is inversely proportional to the propensity of a given locus to be at the nuclear periphery; for example, a 10% decrease in the propensity of a gene to reside at the nuclear envelope is accompanied by a 10% increase in gene expression. Modeling suggests that this is due to both deletion of telomeres and to displacement of genes relative to the nuclear periphery. These data suggest that basal transcriptional activity is sensitive to radial changes in gene position, and provide insight into the functional relevance of budding yeast chromosome-level 3D organization in gene expression.
Collapse
Affiliation(s)
- Marco Di Stefano
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Francesca Di Giovanni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Vasilisa Pozharskaia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Mercè Gomar-Alba
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Davide Baù
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Lucas B Carey
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
- Peking-Tsinghua Center for the Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China
| | - Marc A Marti-Renom
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Manuel Mendoza
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
3
|
Yeast epigenetics: the inheritance of histone modification states. Biosci Rep 2019; 39:BSR20182006. [PMID: 30877183 PMCID: PMC6504666 DOI: 10.1042/bsr20182006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) are two of the most recognised and well-studied model systems for epigenetic regulation and the inheritance of chromatin states. Their silent loci serve as a proxy for heterochromatic chromatin in higher eukaryotes, and as such both species have provided a wealth of information on the mechanisms behind the establishment and maintenance of epigenetic states, not only in yeast, but in higher eukaryotes. This review focuses specifically on the role of histone modifications in governing telomeric silencing in S. cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that exemplify epigenetic inheritance. We discuss the recent advancements that for the first time provide a mechanistic understanding of how heterochromatin, dictated by histone modifications specifically, is preserved during S-phase. We also discuss the current state of our understanding of yeast nucleosome dynamics during DNA replication, an essential component in delineating the contribution of histone modifications to epigenetic inheritance.
Collapse
|
4
|
Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E, Chartrand P, Cobb JA. Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genet 2016; 12:e1006268. [PMID: 27564449 PMCID: PMC5001636 DOI: 10.1371/journal.pgen.1006268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/28/2016] [Indexed: 11/19/2022] Open
Abstract
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Collapse
Affiliation(s)
- Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Sarthi
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mireille Tittel-Elmer
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maxime Lalonde
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Emilio Cusanelli
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Finding a place in the SUN: telomere maintenance in a diverse nuclear landscape. Curr Opin Cell Biol 2016; 40:145-152. [PMID: 27064212 DOI: 10.1016/j.ceb.2016.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022]
Abstract
Telomeres function in the context of a complex nuclear milieu in which telomeres tend to occupy distinct subnuclear regions. Indeed, regulation of the subnuclear positioning of telomeres is conserved from yeast to human, raising the age-old question: to what extent is location important for function? In mitotically dividing cells, the positioning of telomeres affects their epigenetic state and influences telomere processing and synthesis. In meiotic cells, telomere location is important for homologue pairing, centromere assembly and spindle formation. Here we focus on recent insights into the functions of telomere positioning in maintaining genome integrity.
Collapse
|
6
|
Giraud-Panis MJ, Pisano S, Benarroch-Popivker D, Pei B, Le Du MH, Gilson E. One identity or more for telomeres? Front Oncol 2013; 3:48. [PMID: 23509004 PMCID: PMC3598436 DOI: 10.3389/fonc.2013.00048] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/23/2013] [Indexed: 12/19/2022] Open
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- Faculté de Médecine de Nice, Université de Nice-Sophia Antipolis, Institute for Research on Cancer and Aging Nice, UMR 7284 CNRS, U1081 INSERM Nice, France
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
8
|
Meister P, Taddei A. Building silent compartments at the nuclear periphery: a recurrent theme. Curr Opin Genet Dev 2013; 23:96-103. [PMID: 23312840 DOI: 10.1016/j.gde.2012.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 01/12/2023]
Abstract
In eukaryotes, the genetic material is stored in the nucleus, which is enclosed in a double lipid bilayer, the nuclear envelope (NE). It protects the genome from physical stress and separates it from the rest of the cell. On top of this physical function, growing evidence shows that the nuclear periphery contributes to the 3D organization of the genome. In turn, tridimensional organization of chromatin in the nuclear space influences genome expression. Here we review recent findings on the function of this physical barrier in gene repression and latest models on how silent subnuclear compartments at the NE are built in yeast as well as in the nematode C. elegans and mammalian cells; trying to draw parallels between the three systems.
Collapse
Affiliation(s)
- Peter Meister
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
9
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
10
|
Ghosh S, Gardner JM, Smoyer CJ, Friederichs JM, Unruh JR, Slaughter BD, Alexander R, Chisholm RD, Lee KK, Workman JL, Jaspersen SL. Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol Biol Cell 2012; 23:2546-59. [PMID: 22593213 PMCID: PMC3386218 DOI: 10.1091/mbc.e11-07-0600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae SUN-domain protein Mps3 is required for duplication of the yeast centrosome-equivalent organelle, the spindle pole body (SPB), and it is involved in multiple aspects of nuclear organization, including telomere tethering and gene silencing at the nuclear membrane, establishment of sister chromatid cohesion, and repair of certain types of persistent DNA double-stranded breaks. How these diverse SUN protein functions are regulated is unknown. Here we show that the Mps3 N-terminus is a substrate for the acetyltransferase Eco1/Ctf7 in vitro and in vivo and map the sites of acetylation to three lysine residues adjacent to the Mps3 transmembrane domain. Mutation of these residues shows that acetylation is not essential for growth, SPB duplication, or distribution in the nuclear membrane. However, analysis of nonacetylatable mps3 mutants shows that this modification is required for accurate sister chromatid cohesion and for chromosome recruitment to the nuclear membrane. Acetylation of Mps3 by Eco1 is one of the few regulatory mechanisms known to control nuclear organization.
Collapse
Affiliation(s)
- Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Horigome C, Okada T, Shimazu K, Gasser SM, Mizuta K. Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres. EMBO J 2011; 30:3799-811. [PMID: 21822217 DOI: 10.1038/emboj.2011.267] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/07/2011] [Indexed: 11/09/2022] Open
Abstract
Two interacting ribosome biogenesis factors, Ebp2 and Rrs1, associate with Mps3, an essential inner nuclear membrane protein. Both are found in foci along the nuclear periphery, like Mps3, as well as in the nucleolus. Temperature-sensitive ebp2 and rrs1 mutations that compromise ribosome biogenesis displace the mutant proteins from the nuclear rim and lead to a distorted nuclear shape. Mps3 is known to contribute to the S-phase anchoring of telomeres through its interaction with the silent information regulator Sir4 and yKu. Intriguingly, we find that both Ebp2 and Rrs1 interact with the C-terminal domain of Sir4, and that conditional inactivation of either ebp2 or rrs1 interferes with both the clustering and silencing of yeast telomeres, while telomere tethering to the nuclear periphery remains intact. Importantly, expression of an Ebp2-Mps3 fusion protein in the ebp2 mutant suppresses the defect in telomere clustering, but not its defects in growth or ribosome biogenesis. Our results suggest that the ribosome biogenesis factors Ebp2 and Rrs1 cooperate with Mps3 to mediate telomere clustering, but not telomere tethering, by binding Sir4.
Collapse
Affiliation(s)
- Chihiro Horigome
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physical properties of the chromatin fiber and specific molecular interactions as drivers of nuclear order.
Collapse
Affiliation(s)
- Christophe Zimmer
- Groupe Imagerie et Modélisation, Département Biologie Cellulaire et Infection, Institut Pasteur, F-75015 Paris, France
| | | |
Collapse
|
13
|
Ferreira HC, Luke B, Schober H, Kalck V, Lingner J, Gasser SM. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat Cell Biol 2011; 13:867-74. [PMID: 21666682 DOI: 10.1038/ncb2263] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/19/2011] [Indexed: 12/11/2022]
Abstract
Budding yeast telomeres are reversibly bound at the nuclear envelope through two partially redundant pathways that involve the Sir2/3/4 silencing complex and the Yku70/80 heterodimer. To better understand how this is regulated, we studied the role of SUMOylation in telomere anchoring. We find that the PIAS-like SUMO E3 ligase Siz2 sumoylates both Yku70/80 and Sir4 in vivo and promotes telomere anchoring to the nuclear envelope. Remarkably, loss of Siz2 also provokes telomere extension in a telomerase-dependent manner that is epistatic with loss of the helicase Pif1. Consistent with our previously documented role for telomerase in anchorage, normal telomere anchoring in siz2 Δ is restored by PIF1 deletion. By live-cell imaging of a critically short telomere, we show that telomeres shift away from the nuclear envelope when elongating. We propose that SUMO-dependent association with the nuclear periphery restrains bound telomerase, whereas active elongation correlates with telomere release.
Collapse
Affiliation(s)
- Helder C Ferreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure.
Collapse
Affiliation(s)
- Angela Taddei
- UMR 218, Centre National de la Recherche Scientifique, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
15
|
Yeast chromosomal interactions and nuclear architecture. Curr Opin Cell Biol 2010; 22:298-304. [PMID: 20392621 DOI: 10.1016/j.ceb.2010.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/09/2010] [Accepted: 03/18/2010] [Indexed: 02/04/2023]
Abstract
Biology is essentially the study of networks of interactions within or between organisms. The study of chromosomal interactions, while still in its infancy, is providing insights that enable us to study genome biology as a network of inter-linked systems and not simply as the isolated loci we were previously restricted to. Recent work has highlighted how chromosomal interactions, nuclear position and genomic function are inter-linked. This review will start by outlining how chromosomal interactions are determined. It will continue to discuss recent observations of intra-chromosomal and inter-chromosomal interactions in yeast, interactions involving foreign DNA and the formation of chromosomal interactions. The review will then conclude with a model to explain the formation of yeast chromosomal interactions and consequently yeast interphase nuclear structure.
Collapse
|
16
|
Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc Natl Acad Sci U S A 2010; 107:2025-30. [PMID: 20080699 DOI: 10.1073/pnas.0914187107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physical interactions between distinct chromosomal genomic loci are important for genomic functions including recombination and gene expression, but the mechanisms by which these interactions occur remain obscure. Using telomeric association as a model system, we analyzed here the in vivo organization of chromosome ends of haploid yeast cells during interphase. We separately labeled most of the 32 subtelomeres and analyzed their positions both in nuclear space and relative to three representative reference subtelomeres by high-throughput 3D microscopy and image processing. We show that subtelomeres are positioned nonrandomly at the nuclear periphery, depending on the genomic size of their chromosome arm, centromere attachment to the microtubule organizing center (spindle pole body, SPB), and the volume of the nucleolus. The distance of subtelomeres to the SPB increases consistently with chromosome arm length up to approximately 300 kb; for larger arms the influence of chromosome arm length is weaker, but the effect of the nucleolar volume is stronger. Distances between pairs of subtelomeres also exhibit arm-length dependence and suggest, together with dynamic tracking experiments, that potential associations between subtelomeres are unexpectedly infrequent and transient. Our results suggest that interactions between subtelomeres are nonspecific and instead governed by physical constraints, including chromosome structure, attachment to the SPB, and nuclear crowding.
Collapse
|
17
|
Schober H, Ferreira H, Kalck V, Gehlen LR, Gasser SM. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 2009; 23:928-38. [PMID: 19390087 DOI: 10.1101/gad.1787509] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomeres form the ends of linear chromosomes and protect these ends from being recognized as DNA double-strand breaks. Telomeric sequences are maintained in most cells by telomerase, a reverse transcriptase that adds TG-rich repeats to chromosome ends. In budding yeast, telomeres are organized in clusters at the nuclear periphery by interactions that depend on components of silent chromatin and the telomerase-binding factor yeast Ku (yKu). In this study, we examined whether the subnuclear localization of telomeres affects end maintenance. A telomere anchoring pathway involving the catalytic yeast telomerase subunits Est2, Est1, and Tlc1 is shown to be necessary for the perinuclear anchoring activity of Yku80 during S phase. Additionally, we identify the conserved Sad1-UNC-84 (SUN) domain protein Mps3 as the principal membrane anchor for this pathway. Impaired interference with Mps3 anchoring through overexpression of the Mps3 N terminus in a tel1 deletion background led to a senescence phenotype and to deleterious levels of subtelomeric Y' recombination. This suggests that telomere binding to the nuclear envelope helps protect telomeric repeats from recombination. Our results provide an example of a specialized structure that requires proper spatiotemporal localization to fulfill its biological role, and identifies a novel pathway of telomere protection.
Collapse
Affiliation(s)
- Heiko Schober
- NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Towbin BD, Meister P, Gasser SM. The nuclear envelope--a scaffold for silencing? Curr Opin Genet Dev 2009; 19:180-6. [PMID: 19303765 DOI: 10.1016/j.gde.2009.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 01/19/2023]
Abstract
An increasing number of studies indicate that chromosomes are spatially organized in the interphase nucleus and that some genes tend to occupy characteristic zones of the nuclear volume. FISH studies in mammalian cells suggest a differential localization of active and inactive loci, with inactive heterochromatin being largely perinuclear. Recent genome-wide mapping techniques confirm that the nuclear lamina, which lies beneath the nuclear envelope, interacts preferentially with silent genes. To address the functional significance of spatial compartmentation, gain-of-function assays in which chromatin is targeted to the nuclear periphery have now been carried out. Such experiments yielded coherent models in yeast; however, conflicting results in mammalian cells leave it unclear whether these concepts apply to higher organisms. Nevertheless, the recent discovery that evolutionarily conserved inner nuclear membrane proteins support the peripheral anchoring of yeast heterochromatin suggests that certain principles of nuclear organization may hold true from yeast to man.
Collapse
Affiliation(s)
- Benjamin D Towbin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
19
|
Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM. The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 2009; 19:611-25. [PMID: 19179643 DOI: 10.1101/gr.083881.108] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Budding yeast telomeres and cryptic mating-type loci are enriched at the nuclear envelope, forming foci that sequester silent information regulators (SIR factors), much as heterochromatic chromocenters in higher eukaryotes sequester HP1. Here we examine the impact of such subcompartments for regulating transcription genome-wide. We show that the efficiency of subtelomeric reporter gene repression depends not only on the strength of SIR factor recruitment by cis-acting elements, but also on the accumulation of SIRs in such perinuclear foci. To monitor the effects of disrupting this subnuclear compartment, we performed microarray analyses under conditions that eliminate telomere anchoring, while preserving SIR complex integrity. We found 60 genes reproducibly misregulated. Among those with increased expression, 22% were within 20 kb of a telomere, confirming that the nuclear envelope (NE) association of telomeres helps repress natural subtelomeric genes. In contrast, loci that were down-regulated were distributed over all chromosomes. Half of this ectopic repression was SIR complex dependent. We conclude that released SIR factors can promiscuously repress transcription at nontelomeric genes despite the presence of "anti-silencing" mechanisms. Bioinformatic analysis revealed that promoters bearing the PAC (RNA Polymerase A and C promoters) or Abf1 binding consenses are consistently down-regulated by mislocalization of SIR factors. Thus, the normal telomeric sequestration of SIRs both favors subtelomeric repression and prevents promiscuous effects at a distinct subset of promoters. This demonstrates that patterns of gene expression can be regulated by changing the spatial distribution of repetitive DNA sequences that bind repressive factors.
Collapse
Affiliation(s)
- Angela Taddei
- Friedrich Miescher Institute for Biomedical Research and National Center for Competence in Research "Frontiers in Genetics," CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Tate JJ, Cooper TG. Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 8:1223-35. [PMID: 19054131 DOI: 10.1111/j.1567-1364.2008.00441.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Indirect immunofluorescence (IF) microscopy is a frequently used method to determine intracellular protein localization. It is especially useful for low abundance proteins, for example the GATA-factors (Gln3, Gat1) which activate nitrogen catabolite repression (NCR)-sensitive transcription. Limiting nitrogen or treating cells with Tor pathway inhibitor, rapamycin, elicits nuclear GATA-factor localization and increased NCR-sensitive transcription, whereas excess nitrogen restricts these proteins to the cytoplasm and decreases transcription. The initial step of the IF procedure is formalin-fixation that quenches cellular activity and fixes protein locations via cross-linking. We find that under some conditions, formalin itself can influence GATA-factor localization. With low formalin (0.8% or 1.6%), Gat1-Myc(13) became more nuclear, and with higher concentrations (5.6%), it became more cytoplasmic. Gln3-Myc(13) localization, on the other hand, did not respond to low formalin, but became more cytoplasmic at the higher concentration. Interestingly, the high concentration of formalin had no demonstrable effect when the GATA factors were completely nuclear, i.e. after rapamycin (Gat1-Myc(13)) or Msx (Gln3-Myc(13)) treatment. These effects are most likely elicited by polyoxymethylene glycols, which significantly increase the osmolarity of the medium (0.5-2). We suggest that varying degrees of osmotic stress and transcription factor movement in response to it can occur after the beginning of fixation but before proteins become immobilized.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | | |
Collapse
|
21
|
Abstract
Over the last few years important new insights into the process of long-range gene regulation have been obtained. Gene regulatory elements are found to engage in direct physical interactions with distant target genes and with loci on other chromosomes to modulate transcription. An overview of recently discovered long-range chromosomal interactions is presented, and a network approach is proposed to unravel gene-element relationships. Gene expression is controlled by regulatory elements that can be located far away along the chromosome or in some cases even on other chromosomes. Genes and regulatory elements physically associate with each other resulting in complex genome-wide networks of chromosomal interactions. Here we describe several well-characterized cases of long-range interactions involved in the activation and repression of transcription. We speculate on how these interactions may affect gene expression and outline possible mechanisms that may facilitate encounters between distant elements. Finally, we propose that a genome-wide network analysis may provide new insights into the logic of long-range gene regulation.
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605-0103
| |
Collapse
|
22
|
yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. EUKARYOTIC CELL 2008; 7:2168-78. [PMID: 18836091 DOI: 10.1128/ec.00228-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida glabrata, a common opportunistic fungal pathogen, adheres efficiently to mammalian epithelial cells in culture. This interaction in vitro depends mainly on the adhesin Epa1, one of a large family of cell wall proteins. Most of the EPA genes are located in subtelomeric regions, where they are transcriptionally repressed by silencing. In order to better characterize the transcriptional regulation of the EPA family, we have assessed the importance of C. glabrata orthologues of known regulators of subtelomeric silencing in Saccharomyces cerevisiae. To this end, we used a series of strains containing insertions of the reporter URA3 gene within different intergenic regions throughout four telomeres of C. glabrata. Using these reporter strains, we have assessed the roles of SIR2, SIR3, SIR4, HDF1 (yKu70), HDF2 (yKu80), and RIF1 in mediating silencing at four C. glabrata telomeres. We found that, whereas the SIR proteins are absolutely required for silencing of the reporter genes and the native subtelomeric EPA genes, the Rif1 and the Ku proteins regulate silencing at only a subset of the analyzed telomeres. We also mapped a cis element adjacent to the EPA3 locus that can silence a reporter gene when placed at a distance of 31 kb from the telomere. Our data show that silencing of the C. glabrata telomeres varies from telomere to telomere. In addition, recruitment of silencing proteins to the subtelomeres is likely, for certain telomeres, to depend both on the telomeric repeats and on particular discrete silencing elements.
Collapse
|
23
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
24
|
Kalverda B, Röling MD, Fornerod M. Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008; 582:2017-22. [PMID: 18435921 DOI: 10.1016/j.febslet.2008.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 11/15/2022]
Abstract
In the limited space of the nucleus, chromatin is organized in a dynamic and non-random manner. Three ways of chromatin organization are compaction, formation of loops and localization within the nucleus. To study chromatin localization it is most convenient to use the nuclear envelope as a fixed viewpoint. Peripheral chromatin has both been described as silent chromatin, interacting with the nuclear lamina, and active chromatin, interacting with nuclear pore proteins. Current data indicate that the nuclear envelope is a reader as well as a writer of chromatin state, and that its influence is not limited to the nuclear periphery.
Collapse
Affiliation(s)
- Bernike Kalverda
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres. Genetics 2008; 177:2541-6. [PMID: 18073447 DOI: 10.1534/genetics.107.079806] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, genes placed near telomeres are transcriptionally repressed (telomere position effect, TPE). Although telomeric DNA sequence is the same at all chromosome ends, the subtelomeric elements (STEs) and level of TPE vary from telomere to telomere. We tested whether STEs determine TPE levels. STEs contributed to TPE, as deleting the X element from the VI-R telomere modestly decreased silencing at this telomere. However, STEs were not the major determinant of TPE levels, as inserting the VI-R X element at the truncated VII-L telomere did not increase TPE. These data suggest that the TPE levels of individual telomeres are dependent on some aspect of chromosome context.
Collapse
|