1
|
MacKay K, Kusalik A, Eskiw CH. GrapHi-C: graph-based visualization of Hi-C datasets. BMC Res Notes 2018; 11:418. [PMID: 29958536 PMCID: PMC6025839 DOI: 10.1186/s13104-018-3507-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022] Open
Abstract
Objectives Hi-C is a proximity-based ligation reaction used to detect regions of the genome that are close in 3D space (or “interacting”). Typically, results from Hi-C experiments (contact maps) are visualized as heatmaps or Circos plots. While informative, these visualizations do not directly represent genomic structure and folding, making the interpretation of the underlying 3D genomic organization obscured. Our objective was to generate a graph-based contact map representation that leads to a more intuitive structural visualization. Results Normalized contact maps were converted into undirected graphs where each vertex represented a genomic region and each edge represented a detected (intra- and inter-chromosomal) or known (linear) interaction between two regions. Each edge was weighted by the inverse of the linear distance (Hi-C experimental resolution) or the interaction frequency from the contact map. Graphs were generated based on this representation scheme for contact maps from existing fission yeast datasets. Originally, these datasets were used to (1) identify specific principles influencing fission yeast genome organization and (2) uncover changes in fission yeast genome organization during the cell cycle. When compared to the equivalent heatmaps and/or Circos plots, the graph-based visualizations more intuitively depicted the changes in genome organization described in the original studies. Electronic supplementary material The online version of this article (10.1186/s13104-018-3507-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly MacKay
- Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
2
|
Sazer S, Schiessel H. The biology and polymer physics underlying large-scale chromosome organization. Traffic 2018; 19:87-104. [PMID: 29105235 PMCID: PMC5846894 DOI: 10.1111/tra.12539] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexas
| | - Helmut Schiessel
- Institute Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
3
|
Gladyshev E, Kleckner N. Recombination-independent recognition of DNA homology for repeat-induced point mutation. Curr Genet 2016; 63:389-400. [PMID: 27628707 DOI: 10.1007/s00294-016-0649-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
Numerous cytogenetic observations have shown that homologous chromosomes (or individual chromosomal loci) can engage in specific pairing interactions in the apparent absence of DNA breakage and recombination, suggesting that canonical recombination-mediated mechanisms may not be the only option for sensing DNA/DNA homology. One proposed mechanism for such recombination-independent homology recognition involves direct contacts between intact double-stranded DNA molecules. The strongest in vivo evidence for the existence of such a mechanism is provided by the phenomena of homology-directed DNA modifications in fungi, known as repeat-induced point mutation (RIP, discovered in Neurospora crassa) and methylation-induced premeiotically (MIP, discovered in Ascobolus immersus). In principle, Neurospora RIP can detect the presence of gene-sized DNA duplications irrespectively of their origin, underlying nucleotide sequence, coding capacity or relative, as well as absolute positions in the genome. Once detected, both sequence copies are altered by numerous cytosine-to-thymine (C-to-T) mutations that extend specifically over the duplicated region. We have recently shown that Neurospora RIP does not require MEI-3, the only RecA/Rad51 protein in this organism, consistent with a recombination-independent mechanism. Using an ultra-sensitive assay for RIP mutation, we have defined additional features of this process. We have shown that RIP can detect short islands of homology of only three base-pairs as long as many such islands are arrayed with a periodicity of 11 or 12 base-pairs along a pair of DNA molecules. While the presence of perfect homology is advantageous, it is not required: chromosomal segments with overall sequence identity of only 35-36 % can still be recognized by RIP. Importantly, in order for this process to work efficiently, participating DNA molecules must be able to co-align along their lengths. Based on these findings, we have proposed a model, in which sequence homology is detected by direct interactions between slightly-extended double-stranded DNAs. As a next step, it will be important to determine if the uncovered principles also apply to other processes that involve recombination-independent interactions between homologous chromosomal loci in vivo as well as to protein-free DNA/DNA interactions that were recently observed under biologically relevant conditions in vitro.
Collapse
Affiliation(s)
- Eugene Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Room NW140, Cambridge, MA, 02138, USA.
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Room NW140, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Gabdank I, Ramakrishnan S, Villeneuve AM, Fire AZ. A streamlined tethered chromosome conformation capture protocol. BMC Genomics 2016; 17:274. [PMID: 27036078 PMCID: PMC4818521 DOI: 10.1186/s12864-016-2596-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of locus-locus contacts at the chromatin level provides a valuable foundation for understanding of nuclear architecture and function and a valuable tool for inferring long-range linkage relationships. As one approach to this, chromatin conformation capture-based techniques allow creation of genome spatial organization maps. While such approaches have been available for some time, methodological advances will be of considerable use in minimizing both time and input material required for successful application. RESULTS Here we report a modified tethered conformation capture protocol that utilizes a series of rapid and efficient molecular manipulations. We applied the method to Caenorhabditis elegans, obtaining chromatin interaction maps that provide a sequence-anchored delineation of salient aspects of Caenorhabditis elegans chromosome structure, demonstrating a high level of consistency in overall chromosome organization between biological samples collected under different conditions. In addition to the application of the method to defining nuclear architecture, we found the resulting chromatin interaction maps to be of sufficient resolution and sensitivity to enable detection of large-scale structural variants such as inversions or translocations. CONCLUSION Our streamlined protocol provides an accelerated, robust, and broadly applicable means of generating chromatin spatial organization maps and detecting genome rearrangements without a need for cellular or chromatin fractionation.
Collapse
Affiliation(s)
- Idan Gabdank
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Sreejith Ramakrishnan
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, 94304, USA
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, 94304, USA
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, California, 94304, USA.
| |
Collapse
|
5
|
Mizuguchi T, Barrowman J, Grewal SIS. Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Lett 2015; 589:2975-86. [PMID: 26096785 PMCID: PMC4598268 DOI: 10.1016/j.febslet.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Advanced techniques including the chromosome conformation capture (3C) methodology and its derivatives are complementing microscopy approaches to study genome organization, and are revealing new details of three-dimensional (3D) genome architecture at increasing resolution. The fission yeast Schizosaccharomyces pombe (S. pombe) comprises a small genome featuring organizational elements of more complex eukaryotic systems, including conserved heterochromatin assembly machinery. Here we review key insights into genome organization revealed in this model system through a variety of techniques. We discuss the predominant role of Rabl-like configuration for interphase chromosome organization and the dynamic changes that occur during mitosis and meiosis. High resolution Hi-C studies have also revealed the presence of locally crumpled chromatin regions called "globules" along chromosome arms, and implicated a critical role for pericentromeric heterochromatin in imposing fundamental constraints on the genome to maintain chromosome territoriality and stability. These findings have shed new light on the connections between genome organization and function. It is likely that insights gained from the S. pombe system will also broadly apply to higher eukaryotes.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jemima Barrowman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Allshire RC, Ekwall K. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 2015; 7:a018770. [PMID: 26134317 DOI: 10.1101/cshperspect.a018770] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.
Collapse
Affiliation(s)
- Robin C Allshire
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Center for Biosciences, NOVUM, S-141 83, Huddinge, Sweden
| |
Collapse
|
7
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
8
|
Mizuguchi T, Fudenberg G, Mehta S, Belton JM, Taneja N, Folco HD, FitzGerald P, Dekker J, Mirny L, Barrowman J, Grewal SIS. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 2014; 516:432-435. [PMID: 25307058 PMCID: PMC4465753 DOI: 10.1038/nature13833] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions. How local chromatin interactions govern higher-order folding of chromatin fibres and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes. Our analyses of wild-type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form 'globules'. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fibre compaction at centromeres and promotes prominent inter-arm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute, National Institutes of Health Bethesda, MD, 20892, USA
| | - Geoffrey Fudenberg
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sameet Mehta
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute, National Institutes of Health Bethesda, MD, 20892, USA
| | - Jon-Matthew Belton
- Program in Systems Biology University of Massachusetts Medical School Worcester, MA, 01605, USA
| | - Nitika Taneja
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute, National Institutes of Health Bethesda, MD, 20892, USA
| | - Hernan Diego Folco
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute, National Institutes of Health Bethesda, MD, 20892, USA
| | - Peter FitzGerald
- Genome Analysis Unit National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Job Dekker
- Program in Systems Biology University of Massachusetts Medical School Worcester, MA, 01605, USA
| | - Leonid Mirny
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jemima Barrowman
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute, National Institutes of Health Bethesda, MD, 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute, National Institutes of Health Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Usov KE, Wasserlauf IE, Abylkasymova GM, Stegniy VN. Species-specific localization of DNA from pericentromeric heterochromatin on polytene chromosomes in the salivary gland cells and 3D-nuclear organization nurse cells in Drosophila virilis and Drosophila kanekoi (Diptera: Drosophilidae). RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kokhanenko A, Anan'ina T, Stegniy V. Localization of rRNA genes in the nuclear space of Calliphora erythrocephala Mg. nurse cells during polytenization. PROTOPLASMA 2014; 251:93-101. [PMID: 23873188 DOI: 10.1007/s00709-013-0529-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Multicolor 3D fluorescence in situ hybridization was used to study arrangement of rRNA genes in Calliphora erythrocephala nurse cell nuclei with different levels of polyteny. It has been shown that the rRNA genes are exclusively localized to chromosome 6, suggesting that chromosome 6 is the only C. erythrocephala chromosome responsible for nucleolar formation. We have also described changes in localization of ribosomal genes within the chromosome territory during polytenization, namely, that rDNA signals are detected in the peripheral region of chromosome territory starting from the stage of polytene chromosomes. In addition, it has emerged that large nucleolus associated with chromosome 6 starts to develop in the central nuclear region in the C. erythrocephala nurse cell nuclei at the stage of a primary reticular structure. The central position and nucleolar structure are retained at the stages when chromosome 6 occupies the central position, that is, at the stages of polytene and bloblike chromosomes. When the nucleus restores a reticular structure but at a higher polyteny level, the displacement of chromosome 6 to the nuclear periphery is accompanied by disruption of the large nucleolus into micronucleoli. The micronucleoli are distributed in the nuclear space retaining their association with the nucleolar-organizing regions of chromosome 6. Thus, our data suggest that the large-scale alterations in the organization of chromosome 6 and the nucleolus during polytenization are the correlated processes directly dependent on the rRNA gene activity. The earlier described dynamics of nucleolar-organizing chromosome territory and nucleolus in the nuclear space is likely to be associated with the change in the total expression activity of the nucleus, which complies with the hypothesis on the correlation between spatial nuclear organization and expression regulation of genetic material.
Collapse
Affiliation(s)
- Alina Kokhanenko
- Tomsk State University, 36 Lenin Prospekt, Tomsk, 634050, Russian Federation,
| | | | | |
Collapse
|
11
|
Subnuclear relocalization and silencing of a chromosomal region by an ectopic ribosomal DNA repeat. Proc Natl Acad Sci U S A 2013; 110:E4465-73. [PMID: 24191010 DOI: 10.1073/pnas.1315581110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our research addresses the relationship between subnuclear localization and gene expression in fission yeast. We observed the relocalization of a heterochromatic region, the mating-type region, from its natural location at the spindle-pole body to the immediate vicinity of the nucleolus. Relocalization occurred in response to a DNA rearrangement replacing a boundary element (IR-R) with a ribosomal DNA repeat (rDNA-R). Gene expression was strongly silenced in the relocalized mating-type region through mechanisms that differ from those operating in wild type. Also different from the wild-type situation, programmed recombination events failed to take place in the rDNA-R mutant. Increased silencing and perinucleolar localization depended on Reb1, a DNA-binding protein with cognate sites in the rDNA. Reb1 was recently shown to mediate long-range interchromosomal interactions in the nucleus through dimerization, providing a mechanism for the observed relocalization. Replacing the full rDNA repeat with Reb1-binding sites, and using mutants lacking the histone H3K9 methyltransferase Clr4, indicated that the relocalized region was silenced redundantly by heterochromatin and another mechanism, plausibly antisense transcription, achieving a high degree of repression in the rDNA-R strain.
Collapse
|
12
|
Mirkin EV, Chang FS, Kleckner N. Dynamic trans interactions in yeast chromosomes. PLoS One 2013; 8:e75895. [PMID: 24098740 PMCID: PMC3786970 DOI: 10.1371/journal.pone.0075895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional organization of the genome is important for regulation of gene expression and maintenance of genomic stability. It also defines, and is defined by, contacts between different chromosomal loci. Interactions between loci positioned on different chromosomes, i.e. "trans" interactions are one type of such contacts. Here, we describe a case of inducible trans interaction in chromosomes of the budding yeast S. cerevisiae. Special DNA sequences, inserted in two ectopic chromosomal loci positioned in trans, pair with one another in an inducible manner. The spatial proximity diagnostic of pairing is observable by both chromosome capture analysis (3C) and epifluorescence microscopy in whole cells. Protein synthesis de novo appears to be required for this process. The three-dimensional organization of the yeast nucleus imposes a constraint on such pairing, presumably by dictating the probability with which the two sequences collide with one another.
Collapse
Affiliation(s)
- Ekaterina V. Mirkin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Frederick S. Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Steglich B, Sazer S, Ekwall K. Transcriptional regulation at the yeast nuclear envelope. Nucleus 2013; 4:379-89. [PMID: 24021962 DOI: 10.4161/nucl.26394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome inside the nucleus affects many nuclear processes, such as DNA replication, DNA repair, and gene transcription. In metazoans, the nuclear periphery harbors mainly repressed genes that associate with the nuclear lamina. This review discusses how peripheral positioning is connected to transcriptional regulation in yeasts. Tethering of reporter genes to the nuclear envelope was found to result in transcriptional silencing. Similarly, repression of the silent mating type loci and subtelomeric genes is influenced by their position close to the nuclear envelope. In contrast, active genes are bound by nucleoporins and inducible genes associate with the nuclear pore complex upon activation. Taken together, these results portray the nuclear envelope as a platform for transcriptional regulation, both through activation at nuclear pores and silencing at the nuclear envelope.
Collapse
Affiliation(s)
- Babett Steglich
- Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Huddinge, Sweden; Verna and Marrs McLean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA; Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA
| | | | | |
Collapse
|
14
|
Teresa Avelar A, Perfeito L, Gordo I, Godinho Ferreira M. Genome architecture is a selectable trait that can be maintained by antagonistic pleiotropy. Nat Commun 2013; 4:2235. [DOI: 10.1038/ncomms3235] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 07/03/2013] [Indexed: 12/29/2022] Open
|
15
|
Lui DY, Cahoon CK, Burgess SM. Multiple opposing constraints govern chromosome interactions during meiosis. PLoS Genet 2013; 9:e1003197. [PMID: 23341780 PMCID: PMC3547833 DOI: 10.1371/journal.pgen.1003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB) using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if) inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1), caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B) elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ) is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.
Collapse
Affiliation(s)
- Doris Y. Lui
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Cori K. Cahoon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
16
|
Steglich B, Filion GJ, van Steensel B, Ekwall K. The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus 2012; 3:77-87. [PMID: 22156748 DOI: 10.4161/nucl.18825] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Metazoan chromatin at the nuclear periphery is generally characterized by lowly expressed genes and repressive chromatin marks and presents a sub-compartment with properties distinct from the nuclear interior. To test whether the S. pombe nuclear periphery behaves similarly, we used DNA adenine methyltransferase identification (DamID) to map the target loci of two inner nuclear membrane proteins, Ima1 and Man1. We found that peripheral chromatin shows low levels of RNA-Polymerase II and nucleosome occupancy, both characteristic of repressed chromatin regions. Consistently, lowly expressed genes preferentially associate with the periphery and highly expressed genes are depleted from it. When looking at peripheral intergenic regions (IGRs), we found that divergent IGRs are enriched compared with convergent IGRs, indicating that transcription preferentially points away from the periphery rather than toward it. Interestingly, we found that Ima1 and Man1 have common, but also separate target regions in the genome. Ima1-interacting loci were enriched for the RNAi components Dcr1 and Rdp1. This agrees with previous findings that Dcr1 is localized at the nuclear periphery. In contrast, Man1 target loci were bound by the heterochromatin protein Swi6, especially at subtelomeric regions. Subtelomeric chromatin was shown to form a unique chromatin type lacking both repressive and active chromatin features and containing low levels of the histone variant H2A.Z. Thus, we find that the fission yeast nuclear periphery shows similar properties to those of metazoan cells, despite the absence of a nuclear lamina. Our results point to a role of nuclear membrane proteins in organizing chromatin domains and loops.
Collapse
Affiliation(s)
- Babett Steglich
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
17
|
Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery. Dev Cell 2012; 22:1234-46. [PMID: 22579222 DOI: 10.1016/j.devcel.2012.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/17/2012] [Accepted: 03/27/2012] [Indexed: 11/21/2022]
Abstract
Active genes in yeast can be targeted to the nuclear periphery through interaction of cis-acting "DNA zip codes" with the nuclear pore complex. We find that genes with identical zip codes cluster together. This clustering was specific; pairs of genes that were targeted to the nuclear periphery by different zip codes did not cluster together. Insertion of two different zip codes (GRS I or GRS III) at an ectopic site induced clustering with endogenous genes that have that zip code. Targeting to the nuclear periphery and interaction with the nuclear pore is a prerequisite for gene clustering, but clustering can be maintained in the nucleoplasm. Finally, we find that the Put3 transcription factor recognizes the GRS I zip code to mediate both targeting to the NPC and interchromosomal clustering. These results suggest that zip-code-mediated clustering of genes at the nuclear periphery influences the three-dimensional arrangement of the yeast genome.
Collapse
|
18
|
Chen BR, Hale DC, Ciolek PJ, Runge KW. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe. BMC Genomics 2012; 13:161. [PMID: 22554201 PMCID: PMC3418178 DOI: 10.1186/1471-2164-13-161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Genetics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
19
|
Cortini R, Kornyshev AA, Lee DJ, Leikin S. Electrostatic braiding and homologous pairing of DNA double helices. Biophys J 2011; 101:875-84. [PMID: 21843478 DOI: 10.1016/j.bpj.2011.06.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 10/17/2022] Open
Abstract
Homologous pairing and braiding (supercoiling) have crucial effects on genome organization, maintenance, and evolution. Generally, the pairing and braiding processes are discussed in different contexts, independently of each other. However, analysis of electrostatic interactions between DNA double helices suggests that in some situations these processes may be related. Here we present a theory of DNA braiding that accounts for the elastic energy of DNA double helices as well as for the chiral nature of the discrete helical patterns of DNA charges. This theory shows that DNA braiding may be affected, stabilized, or even driven by chiral electrostatic interactions. For example, electrostatically driven braiding may explain the surprising recent observation of stable pairing of homologous double-stranded DNA in solutions containing only monovalent salt. Electrostatic stabilization of left-handed braids may stand behind the chiral selectivity of type II topoisomerases and positive plasmid supercoiling in hyperthermophilic bacteria and archea.
Collapse
Affiliation(s)
- Ruggero Cortini
- Department of Chemistry, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
20
|
Kornyshev AA, Lee DJ, Wynveen A, Leikin S. Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns. Nucleic Acids Res 2011; 39:7289-99. [PMID: 21593127 PMCID: PMC3167609 DOI: 10.1093/nar/gkr260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.
Collapse
Affiliation(s)
- A A Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK.
| | | | | | | |
Collapse
|
21
|
Genome organization influences partner selection for chromosomal rearrangements. Trends Genet 2010; 27:63-71. [PMID: 21144612 DOI: 10.1016/j.tig.2010.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
Chromosomal rearrangements occur as a consequence of the erroneous repair of DNA double-stranded breaks, and often underlie disease. The recurrent detection of specific tumorigenic rearrangements suggests that there is a mechanism behind chromosomal partner selection involving the shape of the genome. With the advent of novel high-throughput approaches, detailed genome integrity and folding maps are becoming available. Integrating these data with knowledge of experimentally induced DNA recombination strongly suggests that partner choice in chromosomal rearrangement primarily follows the three-dimensional conformation of the genome. Local rearrangements are favored over distal and interchromosomal rearrangements. This is seen for neutral rearrangements, but not necessarily for rearrangements that drive oncogenesis. The recurrent detection of tumorigenic rearrangements probably reflects their exceptional capacity to confer growth advantage to the rare cells that contain them. The abundant presence of neutral rearrangements suggests that somatic genome variation is also common in healthy tissue.
Collapse
|
22
|
Abstract
Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them.
Collapse
Affiliation(s)
- Thomas Cremer
- Biozentrum, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
23
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Using a parallel single molecule magnetic tweezers assay we demonstrate homologous pairing of two double-stranded (ds) DNA molecules in the absence of proteins, divalent metal ions, crowding agents, or free DNA ends. Pairing is accurate and rapid under physiological conditions of temperature and monovalent salt, even at DNA molecule concentrations orders of magnitude below those found in vivo, and in the presence of a large excess of nonspecific competitor DNA. Crowding agents further increase the reaction rate. Pairing is readily detected between regions of homology of 5 kb or more. Detected pairs are stable against thermal forces and shear forces up to 10 pN. These results strongly suggest that direct recognition of homology between chemically intact B-DNA molecules should be possible in vivo. The robustness of the observed signal raises the possibility that pairing might even be the "default" option, limited to desired situations by specific features. Protein-independent homologous pairing of intact dsDNA has been predicted theoretically, but further studies are needed to determine whether existing theories fit sequence length, temperature, and salt dependencies described here.
Collapse
|
25
|
O'Sullivan JM, Sontam DM, Grierson R, Jones B. Repeated elements coordinate the spatial organization of the yeast genome. Yeast 2009; 26:125-38. [PMID: 19235779 DOI: 10.1002/yea.1657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The spatial organization of the chromosomes is crucial for gene expression and development. Inter- and intrachromosomal interactions form a crucial part of this epigenomic regulatory system. Here we use circular chromosome conformation capture-on-chip (4C) to identify interactions between repetitive and non-repetitive loci within the yeast genome. The interacting regions occur in non-randomly distributed clusters. Furthermore, the SIR2 histone deacetylase has opposing roles in the organization of the inter- or intrachromosomal interactions. These data establish a dynamic domain model for yeast genome organization. Moreover, they point to the repeated elements playing a central role in the dynamic organization of genome architecture.
Collapse
Affiliation(s)
- J M O'Sullivan
- Institute of Molecular Biosciences, Massey University, Albany, New Zealand.
| | | | | | | |
Collapse
|
26
|
|