1
|
Anderson KJ, Thorolfsdottir ET, Nodelman IM, Halldorsdottir ST, Benonisdottir S, Alghamdi M, Almontashiri N, Barry BJ, Begemann M, Britton JF, Burke S, Cogne B, Cohen AS, de Diego Boguñá C, Eichler EE, Engle EC, Fahrner JA, Faivre L, Fradin M, Fuhrmann N, Gao CW, Garg G, Grečmalová D, Grippa M, Harris JR, Hoekzema K, Hershkovitz T, Hubbard S, Janssens K, Jurgens JA, Kmoch S, Knopp C, Koptagel MA, Ladha FA, Lapunzina P, Lindau T, Meuwissen M, Minicucci A, Neuhaus E, Nizon M, Nosková L, Park K, Patel C, Pfundt R, Prasun P, Rahner N, Robin NH, Ronspies C, Roohi J, Rosenfeld J, Saenz M, Saunders C, Stark Z, Thiffault I, Thull S, Velasco D, Velmans C, Verseput J, Vitobello A, Wang T, Weiss K, Wentzensen IM, Pilarowski G, Eysteinsson T, Gillentine M, Stefánsson K, Helgason A, Bowman GD, Bjornsson HT. Androgens mediate sexual dimorphism in Pilarowski-Bjornsson Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.06.25326635. [PMID: 40385454 PMCID: PMC12083630 DOI: 10.1101/2025.05.06.25326635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Sex-specific penetrance in autosomal dominant Mendelian conditions is largely understudied. The neurodevelopmental disorder Pilarowski-Bjornsson syndrome (PILBOS) was initially described in females. Here, we describe the clinical and genetic characteristics of the largest PILBOS cohort to date, showing that both sexes can exhibit PILBOS features, although males are overrepresented. A mouse model carrying a human-derived Chd1 missense variant (Chd1 R616Q/+) displays female-restricted phenotypes, including growth deficiency, anxiety and hypotonia. Orchiectomy unmasks a growth deficiency phenotype in male Chd1 R616Q/+ mice, while testosterone rescues the phenotype in females, implicating androgens in phenotype modulation. In the gnomAD and UK Biobank databases, rare missense variants in CHD1 are overrepresented in males, supporting a male protective effect. We identify 33 additional highly constrained autosomal genes with missense variant overrepresentation in males. Our results support androgen-regulated sexual dimorphism in PILBOS and open novel avenues to understand the mechanistic basis of sexual dimorphism in other autosomal Mendelian disorders.
Collapse
Affiliation(s)
- Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Ilana M. Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sara Tholl Halldorsdottir
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stefania Benonisdottir
- Institute of Physical Sciences, University of Iceland, Reykjavik, Iceland
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Malak Alghamdi
- Medical Genetics Division, Pediatric Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Naif Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jacquelyn F. Britton
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Burke
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000 Nantes, France
| | - Ana S.A. Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurence Faivre
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, de l’Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Mélanie Fradin
- Service de Genetique Medicale, Centre Labellisé Anomalies du Développement de l’Ouest, CHU Rennes, Rennes, France
| | - Nico Fuhrmann
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine W. Gao
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunjan Garg
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
- Hunter Genetics, Waratah, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dagmar Grečmalová
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Czech Republic
| | - Mina Grippa
- SSD Medical Genetics, Maternal and Child Department, AOU Policlinico Modena, Modena, Italy
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Department of Neurology, Baltimore, Maryland, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Sydney Hubbard
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katrien Janssens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Meral Aktas Koptagel
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Farah A. Ladha
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Pablo Lapunzina
- INGEMM-Institute of Medical and Molecular Genetics, IdiPAZ- CIBERER- Hospital Universitario La Paz, Madrid, Spain and ERNITHACA, Madrid, Spain
| | - Tobias Lindau
- Department of Pediatrics, Gemeinschaftsklinikum Mittelrhein Kemperhof, Koblenzer Straße 115-155, 56073 Koblenz, Germany
| | - Marije Meuwissen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Andreina Minicucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, U.O. Genetica Medica, 40138 Bologna, Italy
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Mathilde Nizon
- Service de Génétique Médicale, Unité de Génétique Clinique, Nantes, France
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women’s Hospital Campus, Herston, Brisbane, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pankaj Prasun
- Division of Genetics, Department of Pediatrics West Virginia School of Medicine, Morgantown, USA
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Nathaniel H. Robin
- Department of Genetics, UAB Heersink School of Medicine, Birmingham AL, USA
| | - Carey Ronspies
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jasmin Roohi
- Department of Genetics, Mid-Atlantic Permanente Medical Group, Washington, DC, USA
| | - Jill Rosenfeld
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Margarita Saenz
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Isabelle Thiffault
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Sarah Thull
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Danita Velasco
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Clara Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jolijn Verseput
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonio Vitobello
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Karin Weiss
- The Genetics Institute Rambam Health Care Campus Haifa Israel
| | | | | | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland
- Department of Ophthalmology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Gregory D. Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Hurst V, Gerhold CB, Tarashev CVD, Challa K, Seeber A, Yamazaki S, Knapp B, Helliwell SB, Bodenmiller B, Harata M, Shimada K, Gasser SM. Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation. Nat Commun 2024; 15:9910. [PMID: 39548059 PMCID: PMC11568269 DOI: 10.1038/s41467-024-54141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Loss of cytosolic actin filaments upon TORC2 inhibition triggers chromosome fragmentation in yeast, which results from altered base excision repair of Zeocin-induced lesions. To find the link between TORC2 kinase and this yeast chromosome shattering (YCS) we performed phosphoproteomics. YCS-relevant phospho-targets included plasma membrane-associated regulators of actin polymerization, such as Las17, the yeast Wiscott-Aldrich Syndrome protein. Induced degradation of Las17 was sufficient to trigger YCS in presence of Zeocin, bypassing TORC2 inhibition. In yeast, Las17 does not act directly at damage, but instead its loss, like TORC2 inhibition, raises nuclear actin levels. Nuclear actin, in complex with Arp4, forms an essential subunit of several nucleosome remodeler complexes, including INO80C, which facilitates DNA polymerase elongation. Here we show that the genetic ablation of INO80C activity leads to partial YCS resistance, suggesting that elevated levels of nuclear G-actin may stimulate INO80C to increase DNA polymerase processivity and convert single-strand lesions into double-strand breaks.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Bühlmann Laboratories AG, Baselstrasse 55, 4124, Schönenbuch, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Transition Bio Inc, 250 Arsenal St, Watertown, 02472, MA, USA
| | - Shota Yamazaki
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Masahiko Harata
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, 1005, Lausanne, Switzerland.
| |
Collapse
|
3
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
4
|
López-Rivera F, Chuang J, Spatt D, Gopalakrishnan R, Winston F. Suppressor mutations that make the essential transcription factor Spn1/Iws1 dispensable in Saccharomyces cerevisiae. Genetics 2022; 222:iyac125. [PMID: 35977387 PMCID: PMC9526074 DOI: 10.1093/genetics/iyac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Spn1/Iws1 is an essential eukaryotic transcription elongation factor that is conserved from yeast to humans as an integral member of the RNA polymerase II elongation complex. Several studies have shown that Spn1 functions as a histone chaperone to control transcription, RNA splicing, genome stability, and histone modifications. However, the precise role of Spn1 is not understood, and there is little understanding of why it is essential for viability. To address these issues, we have isolated 8 suppressor mutations that bypass the essential requirement for Spn1 in Saccharomyces cerevisiae. Unexpectedly, the suppressors identify several functionally distinct complexes and activities, including the histone chaperone FACT, the histone methyltransferase Set2, the Rpd3S histone deacetylase complex, the histone acetyltransferase Rtt109, the nucleosome remodeler Chd1, and a member of the SAGA coactivator complex, Sgf73. The identification of these distinct groups suggests that there are multiple ways in which Spn1 bypass can occur, including changes in histone acetylation and alterations in other histone chaperones. Thus, Spn1 may function to overcome repressive chromatin by multiple mechanisms during transcription. Our results suggest that bypassing a subset of these functions allows viability in the absence of Spn1.
Collapse
Affiliation(s)
| | - James Chuang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Spatt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Xie J, Wen M, Zhang J, Wang Z, Wang M, Qiu Y, Zhao W, Zhu F, Yao M, Rong Z, Hu W, Pei Q, Sun X, Li J, Mao Z, Sun LQ, Tan R. The Roles of RNA Helicases in DNA Damage Repair and Tumorigenesis Reveal Precision Therapeutic Strategies. Cancer Res 2022; 82:872-884. [PMID: 34987058 DOI: 10.1158/0008-5472.can-21-2187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
UNLABELLED DEAD-box RNA helicases belong to a large group of RNA-processing factors and play vital roles unwinding RNA helices and in ribosomal RNA biogenesis. Emerging evidence indicates that RNA helicases are associated with genome stability, yet the mechanisms behind this association remain poorly understood. In this study, we performed a comprehensive analysis of RNA helicases using multiplatform proteogenomic databases. More than 50% (28/49) of detected RNA helicases were highly expressed in multiple tumor tissues, and more than 60% (17/28) of tumor-associated members were directly involved in DNA damage repair (DDR). Analysis of repair dynamics revealed that these RNA helicases are engaged in an extensively broad range of DDR pathways. Among these factors is DDX21, which was prominently upregulated in colorectal cancer. The high expression of DDX21 gave rise to frequent chromosome exchange and increased genome fragmentation. Mechanistically, aberrantly high expression of DDX21 triggered inappropriate repair processes by delaying homologous recombination repair and increasing replication stress, leading to genome instability and tumorigenesis. Treatment with distinct chemotherapeutic drugs caused higher lethality to cancer cells with genome fragility induced by DDX21, providing a perspective for treatment of tumors with high DDX21 expression. This study revealed the role of RNA helicases in DNA damage and their associations with cancer, which could expand therapeutic strategies and improve precision treatments for cancer patients with high expression of RNA helicases. SIGNIFICANCE The involvement of the majority of tumor-associated RNA helicases in the DNA damage repair process suggests a new mechanism of tumorigenesis and offers potential alternative therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Jinru Xie
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Ming Wen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Zhang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yanfang Qiu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Wenchao Zhao
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Fang Zhu
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Mianfeng Yao
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhuoxian Rong
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Wenfeng Hu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Qian Pei
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lun-Quan Sun
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Tan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Santos-Rosa H, Millán-Zambrano G, Han N, Leonardi T, Klimontova M, Nasiscionyte S, Pandolfini L, Tzelepis K, Bartke T, Kouzarides T. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Mol Cell 2021; 81:2793-2807.e8. [PMID: 33979575 PMCID: PMC7612968 DOI: 10.1016/j.molcel.2021.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
DNA replication initiates at genomic locations known as origins of replication, which, in S. cerevisiae, share a common DNA consensus motif. Despite being virtually nucleosome-free, origins of replication are greatly influenced by the surrounding chromatin state. Here, we show that histone H3 lysine 37 mono-methylation (H3K37me1) is catalyzed by Set1p and Set2p and that it regulates replication origin licensing. H3K37me1 is uniformly distributed throughout most of the genome, but it is scarce at replication origins, where it increases according to the timing of their firing. We find that H3K37me1 hinders Mcm2 interaction with chromatin, maintaining low levels of MCM outside of conventional replication origins. Lack of H3K37me1 results in defective DNA replication from canonical origins while promoting replication events at inefficient and non-canonical sites. Collectively, our results indicate that H3K37me1 ensures correct execution of the DNA replication program by protecting the genome from inappropriate origin licensing and spurious DNA replication.
Collapse
Affiliation(s)
- Helena Santos-Rosa
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Gonzalo Millán-Zambrano
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Namshik Han
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Milner Therapeutics Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Tommaso Leonardi
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Center for Genomic Science Istituto Italiano di Tecnologia (IIT), 20139 Milano, Italy
| | - Marie Klimontova
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Simona Nasiscionyte
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Luca Pandolfini
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), 16152 Genova, Italy
| | - Kostantinos Tzelepis
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
7
|
Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R, Chiang YC, Rathmell WK, Emanuele MJ, Churchman LS, Strahl BD. Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity. Nucleic Acids Res 2019; 46:1331-1344. [PMID: 29294086 PMCID: PMC5814799 DOI: 10.1093/nar/gkx1276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Deepak Kumar Jha
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Umut Eser
- Department of Genetics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel Dominguez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02115, USA
| | - Rajarshi Choudhury
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Yun-Chen Chiang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Saatchi F, Kirchmaier AL. Tolerance of DNA Replication Stress Is Promoted by Fumarate Through Modulation of Histone Demethylation and Enhancement of Replicative Intermediate Processing in Saccharomyces cerevisiae. Genetics 2019; 212:631-654. [PMID: 31123043 PMCID: PMC6614904 DOI: 10.1534/genetics.119.302238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal cell cancer result in the accumulation of intracellular fumarate-an inhibitor of α-ketoglutarate-dependent dioxygenases. Fumarase promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1Δ mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate conferring resistance to DNA replication stress in htz1Δ mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate, sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the htz1Δ mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by affecting chromatin modification states, thereby promoting genome integrity.
Collapse
Affiliation(s)
- Faeze Saatchi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
9
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
10
|
Azmi IF, Watanabe S, Maloney MF, Kang S, Belsky JA, MacAlpine DM, Peterson CL, Bell SP. Nucleosomes influence multiple steps during replication initiation. eLife 2017; 6. [PMID: 28322723 PMCID: PMC5400510 DOI: 10.7554/elife.22512] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin.
Collapse
Affiliation(s)
- Ishara F Azmi
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Michael F Maloney
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Sukhyun Kang
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, South Korea
| | - Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States.,Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
11
|
Evstiukhina TA, Alekseeva EA, Fedorov DV, Peshekhonov VT, Korolev VG. The role of remodeling complexes CHD1 and ISWI in spontaneous and UV-induced mutagenesis control in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wei L, Levine AS, Lan L. Transcription-coupled homologous recombination after oxidative damage. DNA Repair (Amst) 2016; 44:76-80. [DOI: 10.1016/j.dnarep.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Yadav T, Whitehouse I. Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes. Cell Rep 2016; 15:715-723. [PMID: 27149855 DOI: 10.1016/j.celrep.2016.03.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
During DNA replication, chromatin must be disassembled and faithfully reassembled on newly synthesized genomes. The mechanisms that govern the assembly of chromatin structures following DNA replication are poorly understood. Here, we exploited Okazaki fragment synthesis and other assays to study how nucleosomes are deposited and become organized in S. cerevisiae. We observe that global nucleosome positioning is quickly established on newly synthesized DNA in vivo. Importantly, we find that ATP-dependent chromatin-remodeling enzymes, Isw1 and Chd1, collaborate with histone chaperones to remodel nucleosomes as they are loaded behind a replication fork. Using a whole-genome sequencing approach, we determine that the positioning of newly deposited nucleosomes in vivo is specified by the combined actions of ATP-dependent chromatin-remodeling enzymes and select DNA-binding proteins. Altogether, our data provide in vivo evidence for coordinated "loading and remodeling" of nucleosomes behind the replication fork, allowing for rapid organization of chromatin during S phase.
Collapse
Affiliation(s)
- Tejas Yadav
- Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Sorenson MR, Jha DK, Ucles SA, Flood DM, Strahl BD, Stevens SW, Kress TL. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol 2016; 13:412-26. [PMID: 26821844 DOI: 10.1080/15476286.2016.1144009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) - a residue methylated by Set2 during transcription elongation - exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast.
Collapse
Affiliation(s)
- Matthew R Sorenson
- a Graduate Program in Microbiology, The University of Texas at Austin , Austin , Texas , USA
| | - Deepak K Jha
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Stefanie A Ucles
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Danielle M Flood
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Brian D Strahl
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA.,d Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Scott W Stevens
- e Department of Molecular Biosciences , University of Texas at Austin , Austin , Texas , USA.,f Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin , Texas , USA
| | - Tracy L Kress
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| |
Collapse
|
15
|
Lee B, Duz MB, Sagong B, Koparir A, Lee KY, Choi JY, Seven M, Yuksel A, Kim UK, Ozen M. Revealing the function of a novel splice-site mutation of CHD7 in CHARGE syndrome. Gene 2015; 576:776-81. [PMID: 26551301 DOI: 10.1016/j.gene.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/24/2015] [Accepted: 11/04/2015] [Indexed: 11/27/2022]
Abstract
Most cases of CHARGE syndrome are sporadic and autosomal dominant. CHD7 is a major causative gene of CHARGE syndrome. In this study, we screened CHD7 in two Turkish patients demonstrating symptoms of CHARGE syndrome such as coloboma, heart defect, choanal atresia, retarded growth, genital abnomalities and ear anomalies. Two mutations of CHD7 were identified including a novel splice-site mutation (c.2443-2A>G) and a previously known frameshift mutation (c.2504_2508delATCTT). We performed exon trapping analysis to determine the effect of the c.2443-2A>G mutation at the transcriptional level, and found that it caused a complete skip of exon 7 and splicing at a cryptic splice acceptor site. Our current study is the second study demonstrating an exon 7 deficit in CHD7. Results of previous studies suggest that the c.2443-2A>G mutation affects the formation of nasal tissues and the neural retina during early development, resulting in choanal atresia and coloboma, respectively. The findings of the present study will improve our understanding of the genetic causes of CHARGE syndrome.
Collapse
Affiliation(s)
- Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Mehmet Bugrahan Duz
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Borum Sagong
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Asuman Koparir
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mehmet Seven
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Adnan Yuksel
- Department of Medical Genetics, Biruni University Medical School, Istanbul, Turkey
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey; Department of Medical Genetics, Biruni University Medical School, Istanbul, Turkey; Department of Pathology & Immunology, Baylor College of Medicine, Michael E. DeBakey VAMC, Houston, TX, United States.
| |
Collapse
|
16
|
An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun 2014; 5:3965. [PMID: 24910128 PMCID: PMC4052371 DOI: 10.1038/ncomms4965] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/25/2014] [Indexed: 12/20/2022] Open
Abstract
Histone modifications are major determinants of DNA double-strand break (DSB) response and repair. Here we elucidate a DSB repair function for transcription-coupled Set2 methylation at H3 lysine 36 (H3K36me). Cells devoid of Set2/H3K36me are hypersensitive to DNA-damaging agents and site-specific DSBs, fail to properly activate the DNA-damage checkpoint, and show genetic interactions with DSB-sensing and repair machinery. Set2/H3K36me3 is enriched at DSBs, and loss of Set2 results in altered chromatin architecture and inappropriate resection during G1 near break sites. Surprisingly, Set2 and RNA polymerase II are programmed for destruction after DSBs in a temporal manner – resulting in H3K36me3 to H3K36me2 transition that may be linked to DSB repair. Finally, we show a requirement of Set2 in DSB repair in transcription units – thus underscoring the importance of transcription-dependent H3K36me in DSB repair.
Collapse
|
17
|
Aklilu BB, Soderquist RS, Culligan KM. Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res 2013; 42:3104-18. [PMID: 24335281 PMCID: PMC3950690 DOI: 10.1093/nar/gkt1292] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric protein complex that binds single-stranded DNA. In plants, multiple genes encode the three RPA subunits (RPA1, RPA2 and RPA3), including five RPA1-like genes in Arabidopsis. Phylogenetic analysis suggests two distinct groups composed of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B, RPA1D (BD group). ACE-group members are transcriptionally induced by ionizing radiation, while BD-group members show higher basal transcription and are not induced by ionizing radiation. Analysis of rpa1 T-DNA insertion mutants demonstrates that although each mutant line is likely null, all mutant lines are viable and display normal vegetative growth. The rpa1c and rpa1e single mutants however display hypersensitivity to ionizing radiation, and combination of rpa1c and rpa1e results in additive hypersensitivity to a variety of DNA damaging agents. Combination of the partially sterile rpa1a with rpa1c results in complete sterility, incomplete synapsis and meiotic chromosome fragmentation, suggesting an early role for RPA1C in promoting homologous recombination. Combination of either rpa1c and/or rpa1e with atr revealed additive hypersensitivity phenotypes consistent with each functioning in unique repair pathways. In contrast, rpa1b rpa1d double mutant plants display slow growth and developmental defects under non-damaging conditions. We show these defects in the rpa1b rpa1d mutant are likely the result of defective DNA replication leading to reduction in cell division.
Collapse
Affiliation(s)
- Behailu B Aklilu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA and Program in Genetics, University of New Hampshire, Durham NH 03824, USA
| | | | | |
Collapse
|
18
|
Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 2013; 38:621-39. [PMID: 24148750 DOI: 10.1016/j.tibs.2013.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
19
|
The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae. Genetics 2013; 195:101-13. [PMID: 23833181 DOI: 10.1534/genetics.113.153080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation.
Collapse
|
20
|
Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 2013; 19:1218-27. [PMID: 23211769 DOI: 10.1038/nsmb.2436] [Citation(s) in RCA: 610] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition.
Collapse
|
21
|
Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, Lee LJ, Buratowski S, van Leeuwen F, Rando OJ, Hartzog GA. A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet 2012; 8:e1002811. [PMID: 22807688 PMCID: PMC3395613 DOI: 10.1371/journal.pgen.1002811] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022] Open
Abstract
Chd proteins are ATP–dependent chromatin remodeling enzymes implicated in biological functions from transcriptional elongation to control of pluripotency. Previous studies of the Chd1 subclass of these proteins have implicated them in diverse roles in gene expression including functions during initiation, elongation, and termination. Furthermore, some evidence has suggested a role for Chd1 in replication-independent histone exchange or assembly. Here, we examine roles of Chd1 in replication-independent dynamics of histone H3 in both Drosophila and yeast. We find evidence of a role for Chd1 in H3 dynamics in both organisms. Using genome-wide ChIP-on-chip analysis, we find that Chd1 influences histone turnover at the 5′ and 3′ ends of genes, accelerating H3 replacement at the 5′ ends of genes while protecting the 3′ ends of genes from excessive H3 turnover. Although consistent with a direct role for Chd1 in exchange, these results may indicate that Chd1 stabilizes nucleosomes perturbed by transcription. Curiously, we observe a strong effect of gene length on Chd1's effects on H3 turnover. Finally, we show that Chd1 also affects histone modification patterns over genes, likely as a consequence of its effects on histone replacement. Taken together, our results emphasize a role for Chd1 in histone replacement in both budding yeast and Drosophila melanogaster, and surprisingly they show that the major effects of Chd1 on turnover occur at the 3′ ends of genes. Nucleosomes prevent transcription by interfering with transcription factor binding at the beginning of genes and blocking elongating RNA polymerase II across the bodies of genes. To overcome this repression, regulatory proteins move, remove, or structurally alter nucleosomes, allowing the transcription machinery access to gene sequences. Over the body of a gene, it is important that nucleosome structure be restored after a polymerase has passed by; failure to do so may lead to activation of transcription from internal gene sequences. Interestingly, although nucleosomes constantly move on and off of promoters, they are relatively stable over the bodies of genes. Thus, the same nucleosomes that are removed to allow a polymerase to pass by must be reassembled in its wake. Here, we examine the role of an ATP–dependent chromatin remodeling protein, Chd1, in regulating nucleosome dynamics. We find that Chd1 is important for exchange of the histone H3 in both yeast and Drosophila and that, surprisingly, while it promotes exchange of histones at the beginning of genes, it prevents exchange at the ends of genes. Finally, we show that Chd1 helps determine the characteristic pattern of chemical modifications of histone H3 found over actively transcribed gene sequences.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tiffani K. Quan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lourdes Valenzuela
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer A. Armstrong
- W. M. Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California, United States of America
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute and Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | - TaeSoo Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts, United States of America
| | - Laura J. Lee
- W. M. Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California, United States of America
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts, United States of America
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute and Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (GAH); (OJR)
| | - Grant A. Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (GAH); (OJR)
| |
Collapse
|
22
|
Abstract
Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.
Collapse
|
23
|
Stevens JR, O'Donnell AF, Perry TE, Benjamin JJR, Barnes CA, Johnston GC, Singer RA. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. PLoS One 2011; 6:e25644. [PMID: 22022426 PMCID: PMC3192111 DOI: 10.1371/journal.pone.0025644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023] Open
Abstract
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome.
Collapse
Affiliation(s)
- Jennifer R. Stevens
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson F. O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Troy E. Perry
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeremy J. R. Benjamin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine A. Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerald C. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard A. Singer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
24
|
Genetic interactions between POB3 and the acetylation of newly synthesized histones. Curr Genet 2011; 57:271-86. [PMID: 21656278 DOI: 10.1007/s00294-011-0347-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
Abstract
Pob3p is an essential component of the S. cerevisiae FACT complex (yFACT). Several lines of evidence indicate that the yFACT complex plays an important role in chromatin assembly including the observation that the pob3 Q308K allele is synthetically lethal with an allele of histone H4 that prevents the diacetylation of newly synthesized molecules. We have analyzed the genetic interactions between the Q308K allele of POB3 and mutations in all of the sites of acetylation that have been identified on newly synthesized histones. Genetic interactions were observed between POB3 and sites of acetylation on the NH(2)-terminal tails of H3 and H4. For histone H3, lysine residues 14 and 23 were particularly important when POB3 activity is compromised. Surprisingly, synthetic defects observed when the pob3 Q308K allele was combined with mutations of H4 lysines 5 and 12, were not phenocopied by deletion of HAT1, which encodes the enzyme that is thought to generate this pattern of acetylation on H4. Genetic interactions were also observed between POB3 and sites of acetylation found in the core domain of newly synthesized histones H3 and H4. These include synthetic lethality with an allele of H4 lysine 91 that mimics constitutive acetylation. While the mutations that alter H4 lysines 5, 12 and 91 do not affect binding to Pob3p, mutation of histone H3 lysine 56 decreases the association of histones with Pob3p. These results support the model that the yFACT complex plays a central role in chromatin assembly pathways regulated by acetylation of newly synthesized histones.
Collapse
|
25
|
Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone. Genetics 2011; 188:835-46. [PMID: 21625001 DOI: 10.1534/genetics.111.128769] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription/Transactions) plays a central role in transcription and replication in eukaryotes by both establishing and overcoming the repressive properties of chromatin. FACT promotes these opposing goals by interconverting nucleosomes between the canonical form and a more open reorganized form. In the forward direction, reorganization destabilizes nucleosomes, while the reverse reaction promotes nucleosome assembly. Nucleosome destabilization involves disrupting contacts among histone H2A-H2B dimers, (H3-H4)(2) tetramers, and DNA. Here we show that mutations that weaken the dimer:tetramer interface in nucleosomes suppress defects caused by FACT deficiency in vivo in the yeast Saccharomyces cerevisiae. Mutating the gene that encodes the Spt16 subunit of FACT causes phenotypes associated with defects in transcription and replication, and we identify histone mutants that selectively suppress those associated with replication. Analysis of purified components suggests that the defective version of FACT is unable to maintain the reorganized nucleosome state efficiently, whereas nucleosomes with mutant histones are reorganized more easily than normal. The genetic suppression observed when the FACT defect is combined with the histone defect therefore reveals the importance of the dynamic reorganization of contacts within nucleosomes to the function of FACT in vivo, especially to FACT's apparent role in promoting progression of DNA replication complexes. We also show that an H2B mutation causes different phenotypes, depending on which of the two similar genes that encode this protein are altered, revealing unexpected functional differences between these duplicated genes and calling into question the practice of examining the effects of histone mutants by expressing them from a single plasmid-borne allele.
Collapse
|
26
|
The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 2011; 30:2596-609. [PMID: 21623345 PMCID: PMC3155300 DOI: 10.1038/emboj.2011.166] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/21/2011] [Indexed: 12/15/2022] Open
Abstract
The ATP-dependent chromatin-remodelling enzyme Chd1 is a 168-kDa protein consisting of a double chromodomain, Snf2-related ATPase domain, and a C-terminal DNA-binding domain. Here, we show the DNA-binding domain is required for Saccharomyces cerevisiae Chd1 to bind and remodel nucleosomes. The crystal structure of this domain reveals the presence of structural homology to SANT and SLIDE domains previously identified in ISWI remodelling enzymes. The presence of these domains in ISWI and Chd1 chromatin-remodelling enzymes may provide a means of efficiently harnessing the action of the Snf2-related ATPase domain for the purpose of nucleosome spacing and provide an explanation for partial redundancy between these proteins. Site directed mutagenesis was used to identify residues important for DNA binding and generate a model describing the interaction of this domain with DNA. Through inclusion of Chd1 sequences in homology searches SLIDE domains were identified in CHD6-9 proteins. Point mutations to conserved amino acids within the human CHD7 SLIDE domain have been identified in patients with CHARGE syndrome.
Collapse
|
27
|
Dorn ES, Cook JG. Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 2011; 6:552-9. [PMID: 21364325 DOI: 10.4161/epi.6.5.15082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control.
Collapse
Affiliation(s)
- Elizabeth Suzanne Dorn
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
28
|
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 2011; 50:1966-80. [PMID: 21288002 DOI: 10.1021/bi101885m] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1677, New York, New York 10065, United States
| | | |
Collapse
|
29
|
Black JC, Allen A, Van Rechem C, Forbes E, Longworth M, Tschöp K, Rinehart C, Quiton J, Walsh R, Smallwood A, Dyson NJ, Whetstine JR. Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression. Mol Cell 2011; 40:736-48. [PMID: 21145482 DOI: 10.1016/j.molcel.2010.11.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/08/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2(-/-) animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizing HP1γ and controlling chromatin accessibility.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lévesque N, Leung GP, Fok AK, Schmidt TI, Kobor MS. Loss of H3 K79 trimethylation leads to suppression of Rtt107-dependent DNA damage sensitivity through the translesion synthesis pathway. J Biol Chem 2010; 285:35113-22. [PMID: 20810656 DOI: 10.1074/jbc.m110.116855] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic integrity is maintained by the coordinated interaction of many DNA damage response pathways, including checkpoints, DNA repair processes, and cell cycle restart. In Saccharomyces cerevisiae, the BRCA1 C-terminal domain-containing protein Rtt107/Esc4 is required for restart of DNA replication after successful repair of DNA damage and for cellular resistance to DNA-damaging agents. Rtt107 and its interaction partner Slx4 are phosphorylated during the initial phase of DNA damage response by the checkpoint kinases Mec1 and Tel1. Because the natural chromatin template plays an important role during the DNA damage response, we tested whether chromatin modifications affected the requirement for Rtt107 and Slx4 during DNA damage repair. Here, we report that the sensitivity to DNA-damaging agents of rtt107Δ and slx4Δ mutants was rescued by inactivation of the chromatin regulatory pathway leading to H3 K79 trimethylation. Further analysis revealed that lack of Dot1, the H3 K79 methyltransferase, led to activation of the translesion synthesis pathway, thereby allowing the survival in the presence of DNA damage. The DNA damage-induced phosphorylation of Rtt107 and Slx4, which was mutually dependent, was not restored in the absence of Dot1. The antagonistic relationship between Rtt107 and Dot1 was specific for DNA damage-induced phenotypes, whereas the genomic instability caused by loss of Rtt107 was not rescued. These data revealed a multifaceted functional relationship between Rtt107 and Dot1 in the DNA damage response and maintenance of genome integrity.
Collapse
Affiliation(s)
- Nancy Lévesque
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
31
|
Dettmann A, Jäschke Y, Triebel I, Bogs J, Schröder I, Schüller HJ. Mediator subunits and histone methyltransferase Set2 contribute to Ino2-dependent transcriptional activation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010; 283:211-21. [PMID: 20054697 DOI: 10.1007/s00438-009-0508-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/16/2009] [Indexed: 01/30/2023]
Abstract
To activate eukaryotic genes, several pathways which modify chromatin and recruit general factors of the transcriptional machinery are utilized. We investigated the factors required for activation of yeast phospholipid biosynthetic genes, depending on activator protein Ino2 which binds to the inositol/choline-responsive element (ICRE) upstream promoter motif together with its partner protein Ino4. We used a set of 15 strains each defective for one of the non essential subunits of yeast mediator complex and identified med2, med3, med15, med18 and med19 as impaired for inositol biosynthesis. In these mutants, ICRE-dependent gene activation was reduced to 13-22% of the wild-type level. We also demonstrate synthetic growth and activation defects among mediator mutants and mutants lacking defined histone modifications (snf1, gcn5) and transcriptional coactivators (sub1). Analysis of mutants defective for histone methylation (set1, set2 and dot1) and demethylation (jhd1, jhd2, gis1, rph1 and ecm5) revealed the importance of the H3 Lys36-specific Set2 methyltransferase for ICRE-dependent gene expression. Although defined mediator subunits are critical for gene activation, we could not detect their interaction with Ino2. In contrast, Ino2 directly binds to the Set2 histone methyltransferase. Mapping of interaction domains revealed the importance of the SET core domain which was necessary and sufficient for binding Ino2.
Collapse
Affiliation(s)
- Anne Dettmann
- Institut für Genetik und Funktionelle Genomforschung, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A 2010; 152A:674-86. [PMID: 20186815 DOI: 10.1002/ajmg.a.33323] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CHARGE syndrome [coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities (including deafness)] is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Here, we review the clinical features of 379 CHARGE patients who tested positive or negative for mutations in CHD7. We found that CHARGE individuals with CHD7 mutations more commonly have ocular colobomas, temporal bone anomalies (semicircular canal hypoplasia/dysplasia), and facial nerve paralysis compared with mutation negative individuals. We also highlight recent genetic and genomic studies that have provided functional insights into CHD7 and the pathogenesis of CHARGE syndrome.
Collapse
Affiliation(s)
- Gabriel E Zentner
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
33
|
Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 2009; 184:321-34. [PMID: 19948887 DOI: 10.1534/genetics.109.111526] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spt4-Spt5, a general transcription elongation factor for RNA polymerase II, also has roles in chromatin regulation. However, the relationships between these functions are not clear. Previously, we isolated suppressors of a Saccharomyces cerevisiae spt5 mutation in genes encoding members of the Paf1 complex, which regulates several cotranscriptional histone modifications, and Chd1, a chromatin remodeling enzyme. Here, we show that this suppression of spt5 can result from loss of histone H3 lysines 4 or 36 methylation, or reduced recruitment of Chd1 or the Rpd3S complex. These spt5 suppressors also rescue the synthetic growth defects observed in spt5 mutants that also lack elongation factor TFIIS. Using a FLO8 reporter gene, we found that a chd1 mutation caused cryptic initiation of transcription. We further observed enhancement of cryptic initiation in chd1 isw1 mutants and increased histone acetylation in a chd1 mutant. We suggest that, as previously proposed for H3 lysine 36 methylation and the Rpd3S complex, H3 lysine 4 methylation and Chd1 function to maintain normal chromatin structures over transcribed genes, and that one function of Spt4-Spt5 is to help RNA polymerase II overcome the repressive effects of these histone modifications and chromatin regulators on transcription.
Collapse
|
34
|
The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 2009; 28:3378-89. [PMID: 19745812 DOI: 10.1038/emboj.2009.270] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF- and MBF-regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature-sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.
Collapse
|
35
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
36
|
H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One 2009; 4:e5882. [PMID: 19521516 PMCID: PMC2690658 DOI: 10.1371/journal.pone.0005882] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 04/27/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Replication origins fire at different times during S-phase. Such timing is determined by the chromosomal context, which includes the activity of nearby genes, telomeric position effects and chromatin structure, such as the acetylation state of the surrounding chromatin. Activation of replication origins involves the conversion of a pre-replicative complex to a replicative complex. A pivotal step during this conversion is the binding of the replication factor Cdc45, which associates with replication origins at approximately their time of activation in a manner partially controlled by histone acetylation. METHODOLOGY/PRINCIPAL FINDINGS Here we identify histone H3 K36 methylation (H3 K36me) by Set2 as a novel regulator of the time of Cdc45 association with replication origins. Deletion of SET2 abolishes all forms of H3 K36 methylation. This causes a delay in Cdc45 binding to origins and renders the dynamics of this interaction insensitive to the state of histone acetylation of the surrounding chromosomal region. Furthermore, a decrease in H3 K36me3 and a concomitant increase in H3 K36me1 around the time of Cdc45 binding to replication origins suggests opposing functions for these two methylation states. Indeed, we find K36me3 depleted from early firing origins when compared to late origins genomewide, supporting a delaying effect of this histone modification for the association of replication factors with origins. CONCLUSIONS/SIGNIFICANCE We propose a model in which K36me1 together with histone acetylation advance, while K36me3 and histone deacetylation delay, the time of Cdc45 association with replication origins. The involvement of the transcriptionally induced H3 K36 methylation mark in regulating the timing of Cdc45 binding to replication origins provides a novel means of how gene expression may affect origin dynamics during S-phase.
Collapse
|
37
|
Knott SRV, Viggiani CJ, Tavaré S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 2009; 23:1077-90. [PMID: 19417103 DOI: 10.1101/gad.1784309] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In higher eukaryotes, heritable gene silencing is associated with histone deacetylation and late replication timing. In Saccharomyces cerevisiae, the histone deacetylase Rpd3 regulates gene expression and also modulates replication timing; however, these mechanisms have been suggested to be independent, and no global association has been found between replication timing and gene expression levels. Using 5-Bromo-2'-deoxyuridine (BrdU) incorporation to generate genome-wide replication profiles, we identified >100 late-firing replication origins that are regulated by Rpd3L, which is specifically targeted to promoters to silence transcription. Rpd3S, which recompacts chromatin after transcription, plays a primary role at only a handful of origins, but subtly influences initiation timing globally. The ability of these functionally distinct Rpd3 complexes to affect replication initiation timing supports the idea that histone deacetylation directly influences initiation timing. Accordingly, loss of Rpd3 function results in higher levels of histone H3 and H4 acetylation surrounding Rpd3-regulated origins, and these origins show a significant association with Rpd3 chromatin binding and gene regulation, supporting a general link between histone acetylation, replication timing, and control of gene expression in budding yeast. Our results also reveal a novel and complementary genomic map of Rpd3L- and Rpd3S-regulated chromosomal loci.
Collapse
Affiliation(s)
- Simon R V Knott
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
38
|
Control of histone methylation and genome stability by PTIP. EMBO Rep 2009; 10:239-45. [PMID: 19229280 DOI: 10.1038/embor.2009.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/27/2009] [Indexed: 11/08/2022] Open
Abstract
PTIP regulates gene transcription by controlling the methylation of histone H3, and also has important roles in cellular responses to DNA damage or to perturbed DNA replication. The available data suggest that the functions of PTIP in transcription and preserving genome stability might be independent and mediated by functionally distinct cellular pools of PTIP. Although considerable progress has been made in understanding how PTIP influences transcription, a coherent picture of how it protects cells from DNA damage at the molecular level has yet to emerge. Here, we describe recent progress made in understanding the cellular roles of PTIP and the relevance of PTIP-interacting proteins, as well as the questions that have yet to be answered.
Collapse
|
39
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Seol JH, Kim HJ, Yoo JK, Park HJ, Cho EJ. Analysis of Saccharomyces cerevisiae histone H3 mutants reveals the role of the alphaN helix in nucleosome function. Biochem Biophys Res Commun 2008; 374:543-8. [PMID: 18657516 DOI: 10.1016/j.bbrc.2008.07.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
To understand the role of histone H3 sub-domains in chromatin function, 35 histone H3 tandem alanine mutants were generated and tested for their viability and sensitivity to DNA damaging agents. Among 13 non-viable H3 mutants, 6 were mapped around the alphaN helix and preceding tail region. Mutants with individual alanine substitutions in this region were viable but developed multiple sensitivities to DNA damaging agents. The only viable triple mutant, REI49-50A, in the alphaN helix region could not grow when combined with histone chaperone mutations, such as asf1Delta, cac1Delta, or hir1Delta, suggesting that this particular region is important when the histone assembly/disassembly pathway is compromised. In addition, further analysis showed that T45, E50, or F54 of the alphaN helix genetically interacted with a histone chaperone (Asf1) and transcription elongation factors (Paf1 and Hpr1). These results suggest a specific role of the H3 alphaN helix in histone dynamics mediated by histone chaperones, which might be important during transcription elongation.
Collapse
Affiliation(s)
- Ja-Hwan Seol
- College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Different genetic functions for the Rpd3(L) and Rpd3(S) complexes suggest competition between NuA4 and Rpd3(S). Mol Cell Biol 2008; 28:4445-58. [PMID: 18490440 DOI: 10.1128/mcb.00164-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rpd3(L) and Rpd3(S) are distinct multisubunit complexes containing the Rpd3 histone deacetylase. Disruption of the GCN5 histone acetyltransferase gene shows a strong synthetic phenotype when combined with either an sds3 mutation affecting only the Rpd3(L) complex or an rco1 mutation affecting only Rpd3(S). However, these synthetic growth defects are not seen in a gcn5 sds3 rco1 triple mutant, suggesting that the balance between Rpd3(L) and Rpd3(S) is critical in cells lacking Gcn5. Different genetic interactions are seen with mutations affecting the FACT chromatin reorganizing complex. An sds3 mutation affecting only Rpd3(L) has a synthetic defect with FACT mutants, while rco1 and eaf3 mutations affecting Rpd3(S) suppress FACT mutant phenotypes. Rpd3(L) therefore acts in concert with FACT, but Rpd3(S) opposes it. Combining FACT mutations with mutations in the Esa1 subunit of the NuA4 histone acetyltransferase results in synthetic growth defects, and these can be suppressed by an rco1 or set2 mutation. An rco1 mutation suppresses phenotypes caused by mutations in the ESA1 and ARP4 subunits of NuA4, while Rco1 overexpression exacerbates these defects. These results suggest a model in which NuA4 and Rpd3(S) compete. Chromatin immunoprecipitation experiments show that eliminating Rpd3(S) increases the amount of NuA4 binding to the ARG3 promoter during transcriptional activation and to the sites of DNA repair induced by a double-strand break. Our results suggest that the Rpd3(L) and Rpd3(S) complexes have distinct functions in vivo and that the relative amounts of the two forms alter the effectiveness of other chromatin-altering complexes, such as FACT and NuA4.
Collapse
|