1
|
Nation CS, Stephany-Brassesco I, Kelly BL, Pizarro JC. Transgenic overexpression of heat shock protein (HSP83) enhances protein kinase A activity, disrupts GP63 surface protease expression and alters promastigote morphology in Leishmania amazonensis. Mol Biochem Parasitol 2023; 255:111574. [PMID: 37150327 DOI: 10.1016/j.molbiopara.2023.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Leishmania parasites undergo morphological changes during their infectious life cycle, including developmental transitions within the sandfly vector, culminating in metacyclic stages that are pre-adapted for infection. Upon entering vertebrate host phagocytes, Leishmania differentiate into intracellular amastigotes, the form that is ultimately transmitted back to the vector to complete the life cycle. Although environmental conditions that induce these cellular transitions are well-established, molecular mechanisms governing Leishmania morphologic differentiation in response to these cues remain largely uncharacterized. Previous studies indicate a key role for HSP83 in both promastigote metacyclogenesis and amastigote differentiation. To further elucidate HSP83 functions in the Leishmania lifecycle, we examined the biological impact of experimentally elevating HSP83 gene expression in Leishmania. Significantly, HSP83 overexpression was associated with altered metacyclic morphology, increased protein kinase A (PKA) activity and decreased expression of the Leishmania major surface protease, GP63. Corroborating these findings, overexpression of the L. amazonensis PKA catalytic subunit resulted in a largely similar phenotype. Our findings demonstrate for the first time in Leishmania, a functional link between HSP83 and PKA in the control of Leishmania gene expression, replication and morphogenesis.
Collapse
Affiliation(s)
- Catherine S Nation
- Department of Tropical Medicine, Tulane University,1440 Canal St., Suite 2301, New Orleans, LA 70112, USA
| | - Isabel Stephany-Brassesco
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Ben L Kelly
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA.
| | - Juan C Pizarro
- Department of Tropical Medicine, Tulane University,1440 Canal St., Suite 2301, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Hoffman CS. Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors. Front Pharmacol 2022; 12:833156. [PMID: 35111072 PMCID: PMC8802716 DOI: 10.3389/fphar.2021.833156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) have been proven to be targets for which highly selective and potent drugs can be developed. Mammalian genomes possess 21 genes whose products are pharmacologically grouped into 11 families; however related genes from pathogenic organisms display sufficient divergence from the mammalian homologs such that PDE inhibitors to these enzymes could be used to treat parasitic infections without acting on the related human PDEs. We have developed a platform for expressing cloned PDEs in the fission yeast Schizosaccharomyces pombe, allowing for inexpensive, but robust screening for small molecule inhibitors that are cell permeable. Such compounds typically display the expected biological activity when tested in cell culture, including anti-inflammatory properties for PDE4 and PDE7 inhibitors. The genetic pliability of S. pombe also allows for molecular genetic screens to identify mutations in target PDE genes that confer some resistance to these inhibitors as a way of investigating the PDE-inhibitor interaction. This screening method is readily accessible to academic laboratories as it does not require the purification of large quantities of a target protein. This allows for the discovery and profiling of PDE inhibitors to treat inflammation or of inhibitors of targets such as pathogen PDEs for which there may not be a sufficient financial motivation for pharmaceutical companies to identify selective PDE inhibitors using more traditional in vitro enzyme-based screening methods.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
3
|
Sun L, Liu XM, Li WZ, Yi YY, He X, Wang Y, Jin QW. The molecular chaperone Hsp90 regulates heterochromatin assembly through stabilizing multiple complexes in fission yeast. J Cell Sci 2020; 133:jcs244863. [PMID: 32499408 DOI: 10.1242/jcs.244863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, both RNAi machinery and RNAi-independent factors mediate transcriptional and posttranscriptional silencing and heterochromatin formation. Here, we show that the silencing of reporter genes at major native heterochromatic loci (centromeres, telomeres, mating-type locus and rDNA regions) and an artificially induced heterochromatin locus is alleviated in a fission yeast hsp90 mutant, hsp90-G84C Also, H3K9me2 enrichment at heterochromatin regions, especially at the mating-type locus and subtelomeres, is compromised, suggesting heterochromatin assembly defects. We further discovered that Hsp90 is required for stabilization or assembly of the RNA-induced transcriptional silencing (RITS) and Argonaute siRNA chaperone (ARC) RNAi effector complexes, the RNAi-independent factor Fft3, the shelterin complex subunit Poz1 and the Snf2/HDAC-containing repressor complex (SHREC). Our ChIP data suggest that Hsp90 regulates the efficient recruitment of the methyltransferase/ubiquitin ligase complex CLRC by shelterin to chromosome ends and targeting of the SHREC and Fft3 to mating type locus and/or rDNA region. Finally, our genetic analyses demonstrated that increased heterochromatin spreading restores silencing at subtelomeres in the hsp90-G84C mutant. Thus, this work uncovers a conserved factor critical for promoting RNAi-dependent and -independent heterochromatin assembly and gene silencing through stabilizing multiple effectors and effector complexes.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wen-Zhu Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuan-Yuan Yi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
4
|
Elías-Villalobos A, Toullec D, Faux C, Séveno M, Helmlinger D. Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast. Nat Commun 2019; 10:5237. [PMID: 31748520 PMCID: PMC6868236 DOI: 10.1038/s41467-019-13243-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Transcription initiation involves the coordinated activities of large multimeric complexes, but little is known about their biogenesis. Here we report several principles underlying the assembly and topological organization of the highly conserved SAGA and NuA4 co-activator complexes, which share the Tra1 subunit. We show that Tra1 contributes to the overall integrity of NuA4, whereas, within SAGA, it specifically controls the incorporation of the de-ubiquitination module (DUB), as part of an ordered assembly pathway. Biochemical and functional analyses reveal the mechanism by which Tra1 specifically interacts with either SAGA or NuA4. Finally, we demonstrate that Hsp90 and its cochaperone TTT promote Tra1 de novo incorporation into both complexes, indicating that Tra1, the sole pseudokinase of the PIKK family, shares a dedicated chaperone machinery with its cognate kinases. Overall, our work brings mechanistic insights into the assembly of transcriptional complexes and reveals the contribution of dedicated chaperones to this process. Transcription initiation involves the coordinated assembly and activity of large multimeric complexes. Here the authors report on the chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in fission yeast, providing insight into the de novo assembly of transcriptional complexes and the contribution of dedicated chaperones to this process.
Collapse
Affiliation(s)
| | - Damien Toullec
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Céline Faux
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | |
Collapse
|
5
|
Zheng F, Jia B, Dong F, Liu L, Rasul F, He J, Fu C. Glucose starvation induces mitochondrial fragmentation depending on the dynamin GTPase Dnm1/Drp1 in fission yeast. J Biol Chem 2019; 294:17725-17734. [PMID: 31562247 DOI: 10.1074/jbc.ra119.010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/07/2019] [Indexed: 01/02/2023] Open
Abstract
Mitochondria undergo morphological and dynamic changes in response to environmental stresses. Few studies have focused on addressing mitochondrial remodeling under stress. Using the fission yeast Schizosaccharomyces pombe as a model organism, here we investigated mitochondrial remodeling under glucose starvation. We employed live-cell microscopy to monitor mitochondrial morphology and dynamics of cells in profusion chambers under glucose starvation. Our results revealed that mitochondria fragment within minutes after glucose starvation and that the dynamin GTPase Dnm1 is required for promoting mitochondrial fragmentation. Moreover, we found that glucose starvation enhances Dnm1 localization to mitochondria and increases the frequency of mitochondrial fission but decreases PKA activity. We further demonstrate that low PKA activity enhances glucose starvation-induced mitochondrial fragmentation, whereas high PKA activity confers resistance to glucose starvation-induced mitochondrial fragmentation. Moreover, we observed that AMP-activated protein kinase is not involved in regulating mitochondrial fragmentation under glucose starvation. Of note, glucose starvation-induced mitochondrial fragmentation was associated with enhanced reactive oxygen species production. Our work provides detailed mechanistic insights into mitochondrial remodeling in response to glucose starvation.
Collapse
Affiliation(s)
- Fan Zheng
- MOE Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bowen Jia
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Fenfen Dong
- MOE Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ling Liu
- MOE Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Faiz Rasul
- MOE Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiajia He
- MOE Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China .,Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Science Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
6
|
Lin HH, Lee TY, Liu TW, Tseng CP. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression. J Biosci Bioeng 2017; 124:108-114. [PMID: 28286121 DOI: 10.1016/j.jbiosc.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/29/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells.
Collapse
Affiliation(s)
- Hsiao-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC
| | - Tsung-Yih Lee
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC
| | - Ting-Wei Liu
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC
| | - Ching-Ping Tseng
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC.
| |
Collapse
|
7
|
Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality. Mol Cell Biol 2016; 36:1412-24. [PMID: 26951197 DOI: 10.1128/mcb.01064-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hsp90 is a molecular chaperone that aids in the folding of its metastable client proteins. Past studies have shown that it can exert a strong impact on some cellular pathways by controlling key regulators. However, it is unknown whether several components of a single pathway are collectively regulated by Hsp90. Here, we observe that Hsp90 influences the protein abundance of multiple Gal proteins and the efficiency of galactose utilization even after the galactose utilization pathway (GAL pathway) is fully induced. The effect of Hsp90 on Gal proteins is not at the transcriptional level. Moreover, Gal1 is found to physically interact with Hsp90, and its stability is reduced in low-Hsp90 cells. When Hsp90 is compromised, several Gal proteins form protein aggregates that colocalize with the disaggregase Hsp104. These results suggest that Gal1 and other Gal proteins are probably the clients of Hsp90. An unbalanced GAL pathway has been known to cause fatal growth arrest due to accumulation of toxic galactose metabolic intermediates. It is likely that Hsp90 chaperones multiple Gal proteins to maintain proteostasis and prevent cell lethality especially in a fluctuating environment.
Collapse
|
8
|
Use of PKA-mediated phenotypes for genetic and small-molecule screens in Schizosaccharomyces pombe. Biochem Soc Trans 2014; 41:1692-5. [PMID: 24256276 DOI: 10.1042/bst20130159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PKA (protein kinase A) in the fission yeast Schizosaccharomyces pombe controls transcription of genes involved in metabolism, cell growth and sexual development. In the present review, we discuss phenotypes associated with either high or low PKA activity in the context of how they can be used to carry out genetic or small-molecule screens that affect components of the PKA pathway. Although our recent research has focused on the study of heterologously expressed cyclic nucleotide PDEs (phosphodiesterases), these same methods can be used to target other S. pombe proteins or their functionally equivalent orthologues that act in the PKA pathway.
Collapse
|
9
|
O'Meara TR, Cowen LE. Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cell Microbiol 2014; 16:473-81. [PMID: 24438186 DOI: 10.1111/cmi.12266] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Abstract
The pathogenic fungi Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans are an increasing cause of human mortality, especially in immunocompromised populations. During colonization and adaptation to various host environments, these fungi undergo morphogenetic alterations that allow for survival within the host. One key environmental cue driving morphological changes is external temperature. The Hsp90 chaperone protein provides one mechanism to link temperature with the signalling cascades that regulate morphogenesis, fungal development and virulence. Candida albicans is a model system for understanding the connections between morphogenesis and Hsp90. Due to the high degree of conservation in Hsp90, many of the connections in C. albicans may be extrapolated to other fungal pathogens or parasites. Examining the role of Hsp90 during development and morphogenesis in these three major fungal pathogens may provide insight into key aspects of adaptation to the host, leading to additional avenues for therapy.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Ishida M, Tomomari T, Kanzaki T, Abe T, Oka T, Yohda M. Biochemical characterization and cooperation with co-chaperones of heat shock protein 90 from Schizosaccharomyces pombe. J Biosci Bioeng 2013; 116:444-8. [PMID: 23664927 DOI: 10.1016/j.jbiosc.2013.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The characterization of Hsp90 from the fission yeast Schizosaccharomyces pombe was performed. Hsp90 of S. pombe existed as a dimer and exhibited ATP-dependent conformational changes. It captured unfolded proteins in the ATP-free open conformation and protected them from thermal aggregation. Hsp90 of S. pombe was also able to refold thermally denatured firefly luciferase. The co-chaperones Sti1 and Aha1 bound Hsp90 and modulated its activity. Because the affinity of Sti1 was higher than that of Aha1, the effect of Sti1 appeared to dominate when both co-chaperones existed simultaneously.
Collapse
Affiliation(s)
- Mari Ishida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
12
|
Flom GA, Langner E, Johnson JL. Identification of an Hsp90 mutation that selectively disrupts cAMP/PKA signaling in Saccharomyces cerevisiae. Curr Genet 2012; 58:149-63. [PMID: 22461145 DOI: 10.1007/s00294-012-0373-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 01/14/2023]
Abstract
The molecular chaperone Hsp90 cooperates with multiple cochaperone proteins as it promotes the folding and activation of diverse client proteins. Some cochaperones regulate the ATPase activity of Hsp90, while others appear to promote Hsp90 interaction with specific types of client proteins. Through its interaction with the adenylate cyclase Cyr1, the Sgt1 cochaperone modulates the activity of the cAMP pathway in Saccharomyces cerevisiae. A specific mutation in yeast Hsp90, hsc82-W296A, or a mutation in Sgt1, sgt1-K360E, resulted in altered transcription patterns genetically linked to the cAMP pathway. Hsp90 interacted with Cyr1 in vivo and the hsc82-W296A mutation resulted in reduced accumulation of Cyr1. Hsp90-Sgt1 interaction was altered by either the hsc82-W296A or sgt1-K360E mutation, suggesting defective Hsp90-Sgt1 cooperation leads to reduced Cyr1 activity. Microarray analysis of hsc82-W296A cells indicated that over 80 % of all transcriptional changes in this strain may be attributed to altered cAMP signaling. This suggests that a majority of the cellular defects observed in hsc82-W296A cells are due to altered interaction with one specific essential cochaperone, Sgt1 and one essential client, Cyr1. Together our results indicate that specific interaction of Hsp90 and Sgt1 with Cyr1 plays a key role in regulating gene expression, including genes involved in polarized morphogenesis.
Collapse
Affiliation(s)
- Gary A Flom
- Department of Biological Sciences, Center for Reproductive Biology, University of Idaho, Life Sciences South Room 252, P.O. Box 443051, Moscow, ID 83844-3051, USA
| | | | | |
Collapse
|
13
|
Demirbas D, Ceyhan O, Wyman AR, Hoffman CS. A fission yeast-based platform for phosphodiesterase inhibitor HTSs and analyses of phosphodiesterase activity. Handb Exp Pharmacol 2011:135-49. [PMID: 21695638 DOI: 10.1007/978-3-642-17969-3_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fission yeast strains have been engineered so that their growth behavior reflects the activity of heterologous cyclic nucleotide phosphodiesterases (PDEs). These strains can be used in High-Throughput Screens (HTSs) for PDE inhibitors that possess "drug-like" characteristics, displaying activity in a growth stimulation assay over a 48-h period. Through three generations of development, a collection of strains expressing 10 of the 11 mammalian PDE families that is appropriate for small molecule inhibitor screening has been generated in our laboratory. Strains unable to synthesize cyclic nucleotides allow characterization of PDE activity in that the enzyme's potency is reflected in the amount of either cAMP or cGMP that must be added to the growth medium to stimulate cell growth. In the future, this system could be used to screen cDNA libraries for biological regulators of target PDEs and for the construction of strains that co-express PDEs and associated regulatory proteins to facilitate molecular and genetic studies of their functions and, in particular, to identify whether different PDE-partner protein complexes show distinct patterns of inhibitor sensitivity.
Collapse
Affiliation(s)
- Didem Demirbas
- Biology Department, Boston College, Higgins Hall 401B, Chestnut Hill, Boston, MA 02467, USA
| | | | | | | |
Collapse
|
14
|
Demirbas D, Ceyhan O, Wyman AR, Ivey FD, Allain C, Wang L, Sharuk MN, Francis SH, Hoffman CS. Use of a Schizosaccharomyces pombe PKA-repressible reporter to study cGMP metabolising phosphodiesterases. Cell Signal 2010; 23:594-601. [PMID: 21118717 DOI: 10.1016/j.cellsig.2010.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/13/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The Schizosaccharomyces pombe fbp1 gene is transcriptionally repressed by protein kinase A (PKA) that is activated by extracellular glucose via a cAMP-signaling pathway. We previously used an fbp1-ura4 reporter that places uracil biosynthesis under the control of the glucose-sensing pathway to identify mutations in genes of the cAMP pathway. More recently, this reporter has been used in high throughput screens for small molecule inhibitors of heterologously-expressed cyclic nucleotide phosphodiesterases (PDEs) that hydrolyse cAMP to 5' AMP. Here we show that strains lacking the adenylyl cyclase gene respond to either exogenous cAMP or cGMP to activate PKA, thus regulating fbp1-ura4 expression and other PKA-regulated processes such as conjugation and the nuclear export of an Rst2-GFP fusion protein. Expression of cGMP-specific PDEs or ones that hydrolyse both cAMP and cGMP increases the amount of exogenous cGMP required to activate PKA in order to repress fbp1-ura4 expression, creating conditions that allow detection of inhibitors of these PDEs. As proof of this concept, we screened a collection of compounds previously identified as inhibitors of cAMP-specific PDE4 or PDE7 enzymes for their ability to inhibit the mammalian cGMP-specific PDE5A enzyme. We identified compound BC76, which inhibits PDE5A in an in vitro enzyme assay with an IC(50) of 232nM. Further yeast-based assays show that BC76 inhibits PDE1, PDE4, PDE5, PDE8, PDE10 and PDE11, thus demonstrating the utility of this system for detecting and characterising inhibitors of either cAMP- or cGMP-metabolising PDEs.
Collapse
Affiliation(s)
- Didem Demirbas
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee S, Kim JS, Yun CH, Chae HZ, Kim K. Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function. BMB Rep 2010; 42:812-6. [PMID: 20044953 DOI: 10.5483/bmbrep.2009.42.12.812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To screen chaperone proteins from Schizosaccharomyce pombe (S. pombe), we prepared recombinant citrate synthase of the fission yeast as a substrate of anti-aggregation assay. Purified recombinant citrate synthase showed citrate synthase activity and was suitable for the substrate of chaperone assay. Several heat stable proteins including aspartyl aminopeptidase (AAP) for candidates of chaperone were screened from the supernatant fraction of heat-treated crude extract of S. pombe. The purified AAP migrated as a single band of 47 kDa on SDS-polyacrylamide gel electrophoresis. The native size of AAP was estimated as 200 kDa by a HPLC gel permeation chromatography. This enzyme can remove the aspartyl residue at N-terminus of angiotensin I. In addition, AAP showed the heat stability and protected the aggregation of citrate synthase caused by thermal denaturation. This study showed that S. pombe AAP is a moonlight protein that has aspartyl aminopeptidase and chaperone activities.
Collapse
Affiliation(s)
- Songmi Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | | | | | | | | |
Collapse
|
16
|
Dijck PV. Nutrient sensing G protein-coupled receptors: interesting targets for antifungals? Med Mycol 2009; 47:671-80. [DOI: 10.3109/13693780802713349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|