1
|
Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, Saito T, Hisanaga SI, Iijima KM, Ando K. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem 2017; 162:335-342. [PMID: 28992057 DOI: 10.1093/jb/mvx038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023] Open
Abstract
Abnormal deposition of the microtubule-associated protein tau is a common pathological feature of multiple neurodegenerative diseases, including Alzheimer's disease (AD), and plays critical roles in their pathogenesis. Disruption of calcium homeostasis and the downstream kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) coincides with pathological phosphorylation of tau in AD brains. However, it remains unclear whether and how dysregulation of CaMKII affects tau toxicity. Using a Drosophila model, we found that CaMKII promotes neurodegeneration caused by tau phosphorylated at the AD-associated sites Ser262/356. Overexpression of CaMKII promoted, while RNA-mediated knockdown of CaMKII and inhibition of CaMKII activity by expression of an inhibitory peptide suppressed, tau-mediated neurodegeneration. Blocking tau phosphorylation at Ser262/356 by alanine substitutions suppressed promotion of tau toxicity by CaMKII, suggesting that tau phosphorylation at these sites is required for this phenomenon. However, neither knockdown nor overexpression of CaMKII affected tau phosphorylation levels at Ser262/356, suggesting that CaMKII is not directly involved in tau phosphorylation at Ser262/356 in this model. These results suggest that a pathological cascade of events, including elevated levels of tau phosphorylated at Ser262/356 and aberrant activation of CaMKII, work in concert to promote tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mikiko Oka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sawako Shimizu
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-machi, Obu, Aichi 474-8511, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
The Long 3'UTR mRNA of CaMKII Is Essential for Translation-Dependent Plasticity of Spontaneous Release in Drosophila melanogaster. J Neurosci 2017; 37:10554-10566. [PMID: 28954869 DOI: 10.1523/jneurosci.1313-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
A null mutation of the Drosophila calcium/calmodulin-dependent protein kinase II gene (CaMKII) was generated using homologous recombination. Null animals survive to larval and pupal stages due to a large maternal contribution of CaMKII mRNA, which consists of a short 3'-untranslated region (UTR) form lacking regulatory elements that guide local translation. The selective loss of the long 3'UTR mRNA in CaMKII-null larvae allows us to test its role in plasticity. Development and evoked function of the larval neuromuscular junction are surprisingly normal, but the resting rate of miniature excitatory junctional potentials (mEJPs) is significantly lower in CaMKII mutants. Mutants also lack the ability to increase mEJP rate in response to spaced depolarization, a type of activity-dependent plasticity shown to require both transcription and translation. Consistent with this, overexpression of miR-289 in wild-type animals blocks plasticity of spontaneous release. In addition to the defects in regulation of mEJP rate, CaMKII protein is largely lost from synapses in the mutant. All phenotypes are non-sex-specific and rescued by a fosmid containing the entire wild-type CaMKII locus, but only viability and CaMKII localization are rescued by genomic fosmids lacking the long 3'UTR. This suggests that synaptic CaMKII accumulates by two distinct mechanisms: local synthesis requiring the long 3'UTR form of CaMKII mRNA and a process that requires zygotic transcription of CaMKII mRNA. The origin of synaptic CaMKII also dictates its functionality. Locally translated CaMKII has a privileged role in regulation of spontaneous release, which cannot be fulfilled by synaptic CaMKII from the other pool.SIGNIFICANCE STATEMENT As a regulator of synaptic development and plasticity, CaMKII has important roles in both normal and pathological function of the nervous system. CaMKII shows high conservation between Drosophila and humans, underscoring the usefulness of Drosophila in modeling its function. Drosophila CaMKII-null mutants remain viable throughout development, enabling morphological and electrophysiological characterization. Although the structure of the synapse is normal, maternally contributed CaMKII does not localize to synapses. Zygotic production of CaMKII mRNA with a long 3'-untranslated region is necessary for modulating spontaneous neurotransmission in an activity-dependent manner, but not for viability. These data argue that regulation of CaMKII localization and levels by local transcriptional processes is conserved. This is the first demonstration of distinct functions for Drosophila CaMKII mRNA variants.
Collapse
|
3
|
Jones MR, Villalón E, Northcutt AJ, Calcutt NA, Garcia ML. Differential effects of myostatin deficiency on motor and sensory axons. Muscle Nerve 2017; 56:E100-E107. [PMID: 28073155 DOI: 10.1002/mus.25570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Deletion of myostatin in mice (MSTN-/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. METHODS Using the MSTN-/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. RESULTS Axon diameter and myelin thickness were increased in motor axons of MSTN-/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. DISCUSSION These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017.
Collapse
Affiliation(s)
- Maria R Jones
- Department of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,C.S. Bond Life Sciences Center, University of Missouri, 1201 East Rollins Road, Columbia, Missouri, 65211, USA
| | - Eric Villalón
- Department of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,C.S. Bond Life Sciences Center, University of Missouri, 1201 East Rollins Road, Columbia, Missouri, 65211, USA
| | - Adam J Northcutt
- Department of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Michael L Garcia
- Department of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,C.S. Bond Life Sciences Center, University of Missouri, 1201 East Rollins Road, Columbia, Missouri, 65211, USA
| |
Collapse
|
4
|
Pereira MSL, Klamt F, Thomé CC, Worm PV, de Oliveira DL. Metabotropic glutamate receptors as a new therapeutic target for malignant gliomas. Oncotarget 2017; 8:22279-22298. [PMID: 28212543 PMCID: PMC5400663 DOI: 10.18632/oncotarget.15299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Metabotropic glutamate receptors (mGluR) are predominantly involved in maintenance of cellular homeostasis of central nervous system. However, evidences have suggested other roles of mGluR in human tumors. Aberrant mGluR signaling has been shown to participate in transformation and maintenance of various cancer types, including malignant brain tumors. This review intends to summarize recent findings regarding the involvement of mGluR-mediated intracellular signaling pathways in progression, aggressiveness, and recurrence of malignant gliomas, mainly glioblastomas (GBM), highlighting the potential therapeutic applications of mGluR ligands. In addition to the growing number of studies reporting mGluR gene or protein expression in glioma samples (resections, lineages, and primary cultures), pharmacological blockade in vitro of mGluR1 and mGluR3 by selective ligands has been shown to be anti-proliferative and anti-migratory, decreasing activation of MAPK and PI3K pathways. In addition, mGluR3 antagonists promoted astroglial differentiation of GBM cells and also enabled cytotoxic action of temozolomide (TMZ). mGluR3-dependent TMZ toxicity was supported by increasing levels of MGMT transcripts through an intracellular signaling pathway that sequentially involves PI3K and NF-κB. Further, continuous pharmacological blockade of mGluR1 and mGluR3 have been shown to reduced growth of GBM tumor in two independent in vivo xenograft models. In parallel, low levels of mGluR3 mRNA in GBM resections may be a predictor for long survival rate of patients. Since several Phase I, II and III clinical trials are being performed using group I and II mGluR modulators, there is a strong scientifically-based rationale for testing mGluR antagonists as an adjuvant therapy for malignant brain tumors.
Collapse
Affiliation(s)
- Mery Stefani Leivas Pereira
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Fábio Klamt
- Department of Biochemistry, Laboratory of Cellular Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Chairini Cássia Thomé
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Paulo Valdeci Worm
- Department of Neurosurgery, Cristo Redentor Hospital – GHC – Porto Alegre RS, Brazil
- Department of Neurosurgery, São José Hospital, Complexo Hospitalar Santa Casa, Porto Alegre RS, Brazil
| | - Diogo Losch de Oliveira
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| |
Collapse
|
5
|
Li C, Wang J, Zhao J, Wang Y, Liu Z, Guo FL, Wang XF, Vreugdenhil M, Lu CB. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices. Eur J Neurosci 2016; 44:2236-46. [PMID: 27336700 DOI: 10.1111/ejn.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/16/2023]
Abstract
Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.
Collapse
Affiliation(s)
- Chengzhang Li
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jiangang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yali Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Zhihua Liu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Fang Li Guo
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Xiao Fang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical University, Xinxiang, China.,School of Health and Education, Birmingham City University, Birmingham, UK
| | - Cheng Biao Lu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| |
Collapse
|
6
|
Shang FF, Xia QJ, Liu W, Xia L, Qian BJ, You L, He M, Yang JL, Wang TH. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle. Sci Rep 2016; 6:22884. [PMID: 26964899 PMCID: PMC4786822 DOI: 10.1038/srep22884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine receptors (AChRs) serve as connections between motor neurons and skeletal muscle and are essential for recovery from spinal cord transection (SCT). Recently, microRNAs have emerged as important potential biotherapeutics for several diseases; however, whether miRNAs operate in the modulation of AChRs remains unknown. We found increased AChRs numbers and function scores in rats with SCT; these increases were reduced following the injection of a eukaryotic translation initiation factor 5A1 (eIF5A1) shRNA lentivirus into the hindlimb muscle. Then, high-throughput screening for microRNAs targeting eIF5A1 was performed, and miR-434-3p was found to be robustly depleted in SCT rat skeletal muscle. Furthermore, a highly conserved miR-434-3p binding site was identified within the mRNA encoding eIF5A1 through bioinformatics analysis and dual-luciferase assay. Overexpression or knockdown of miR-434-3p in vivo demonstrated it was a negative post-transcriptional regulator of eIF5A1 expression and influenced AChRs expression. The microarray-enriched Gene Ontology (GO) terms regulated by miR-434-3p were muscle development terms. Using a lentivirus, one functional gene (map2k6) was confirmed to have a similar function to that of miR-434-3p in GO terms. Finally, HRM and MeDIP-PCR analyses revealed that DNA demethylation also up-regulated eIF5A1 after SCT. Consequently, miR-434-3p/eIF5A1 in muscle is a promising potential biotherapy for SCI repair.
Collapse
Affiliation(s)
- Fei-Fei Shang
- Institute of Neurological Disease, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Qing-Jie Xia
- Institute of Neurological Disease, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Wei Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Lei Xia
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Bao-Jiang Qian
- Institute of Neuroscience, Kunming medical University, Kunming, 650031, P.R. China
| | - Ling You
- Institute of Neuroscience, Kunming medical University, Kunming, 650031, P.R. China
| | - Mu He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jin-Liang Yang
- Institute of Neurological Disease, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
- Institute of Neuroscience, Kunming medical University, Kunming, 650031, P.R. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
7
|
Satheesh NJ, Büsselberg D. The role of intracellular calcium for the development and treatment of neuroblastoma. Cancers (Basel) 2015; 7:823-48. [PMID: 26010602 PMCID: PMC4491686 DOI: 10.3390/cancers7020811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is the second most common paediatric cancer. It developsfrom undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, theaetiology behind the development of neuroblastoma is still not fully understood. Intracellularcalcium ([Ca2+]i) is a secondary messenger which regulates numerous cellular processesand, therefore, its concentration is tightly regulated. This review focuses on the role of[Ca2+]i in differentiation, apoptosis and proliferation in neuroblastoma. It describes themechanisms by which [Ca2+]i is regulated and how it modulates intracellular pathways.Furthermore, the importance of [Ca2+]i for the function of anti-cancer drugs is illuminatedin this review as [Ca2+]i could be a target to improve the outcome of anti-cancer treatmentin neuroblastoma. Overall, modulations of [Ca2+]i could be a key target to induce apoptosisin cancer cells leading to a more efficient and effective treatment of neuroblastoma.
Collapse
Affiliation(s)
- Noothan Jyothi Satheesh
- Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, POB 24144, Doha, Qatar.
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, POB 24144, Doha, Qatar.
| |
Collapse
|
8
|
Intervention effect of traditional Chinese medicine Yi Tang Kang on metabolic syndrome of spleen deficiency. ASIAN PAC J TROP MED 2015; 8:162-8. [DOI: 10.1016/s1995-7645(14)60309-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/20/2014] [Accepted: 01/15/2015] [Indexed: 11/24/2022] Open
|
9
|
Balakrishnan SS, Basu U, Raghu P. Phosphoinositide signalling in Drosophila. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:770-84. [PMID: 25449646 DOI: 10.1016/j.bbalip.2014.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/28/2023]
Abstract
Phosphoinositides (PtdInsPs) are lipids that mediate a range of conserved cellular processes in eukaryotes. These include the transduction of ligand binding to cell surface receptors, vesicular transport and cytoskeletal function. The nature and functions of PtdInsPs were initially elucidated through biochemical experiments in mammalian cells. However, over the years, genetic and cell biological analysis in a range of model organisms including S. cerevisiae, D. melanogaster and C. elegans have contributed to an understanding of the involvement of PtdInsPs in these cellular events. The fruit fly Drosophila is an excellent genetic model for the analysis of cell and developmental biology as well as physiological processes, particularly analysis of the complex relationship between the cell types of a metazoan in mediating animal physiology. PtdInsP signalling pathways are underpinned by enzymes that synthesise and degrade these molecules and also by proteins that bind to these lipids in cells. In this review we provide an overview of the current understanding of PtdInsP signalling in Drosophila. We provide a comparative genomic analysis of the PtdInsP signalling toolkit between Drosophila and mammalian systems. We also review some areas of cell and developmental biology where analysis in Drosophila might provide insights into the role of this lipid-signalling pathway in metazoan biology. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Sruthi S Balakrishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Urbashi Basu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
10
|
Johnson C, Chun-Jen Lin C, Stern M. Ras-dependent and Ras-independent effects of PI3K in Drosophila motor neurons. GENES BRAIN AND BEHAVIOR 2012; 11:848-58. [DOI: 10.1111/j.1601-183x.2012.00822.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/02/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Affiliation(s)
- C. Johnson
- Department of Biochemistry and Cell Biology; Rice University; Houston; TX; USA
| | - C. Chun-Jen Lin
- Department of Biochemistry and Cell Biology; Rice University; Houston; TX; USA
| | - M. Stern
- Department of Biochemistry and Cell Biology; Rice University; Houston; TX; USA
| |
Collapse
|
11
|
Callan MA, Clements N, Ahrendt N, Zarnescu DC. Fragile X Protein is required for inhibition of insulin signaling and regulates glial-dependent neuroblast reactivation in the developing brain. Brain Res 2012; 1462:151-61. [PMID: 22513101 DOI: 10.1016/j.brainres.2012.03.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/16/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental disability and known cause of autism. It is caused by loss of function for the RNA binding protein FMRP, which has been demonstrated to regulate several aspects of RNA metabolism including transport, stability and translation at synapses. Recently, FMRP has been implicated in neural stem cell proliferation and differentiation both in cultured neurospheres as well as in vivo mouse and fly models of FXS. We have previously shown that FMRP deficient Drosophila neuroblasts upregulate Cyclin E, prematurely exit quiescence, and overproliferate to generate on average 16% more neurons. Here we further investigate FMRP's role during early development using the Drosophila larval brain as a model. Using tissue specific RNAi we find that FMRP is required sequentially, first in neuroblasts and then in glia, to regulate exit from quiescence as measured by Cyclin E expression in the brain. Furthermore, we tested the hypothesis that FMRP controls brain development by regulating the insulin signaling pathway, which has been recently shown to regulate neuroblast exit from quiescence. Our data indicate that phosphoAkt, a readout of insulin signaling, is upregulated in dFmr1 brains at the time when FMRP is required in glia for neuroblast reactivation. In addition, dFmr1 interacts genetically with dFoxO, a transcriptional regulator of insulin signaling. Our results provide the first evidence that FMRP is required in vivo, in glia for neuroblast reactivation and suggest that it may do so by regulating the output of the insulin signaling pathway. This article is part of a Special Issue entitled: RNA-Binding Proteins.
Collapse
Affiliation(s)
- Matthew A Callan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
12
|
Meinertzhagen IA, Lee CH. The genetic analysis of functional connectomics in Drosophila. ADVANCES IN GENETICS 2012; 80:99-151. [PMID: 23084874 DOI: 10.1016/b978-0-12-404742-6.00003-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|