1
|
Dhyani K, Dash S, Joshi S, Garg A, Pal D, Nishant K, Muniyappa K. The ATPase activity of yeast chromosome axis protein Hop1 affects the frequency of meiotic crossovers. Nucleic Acids Res 2025; 53:gkae1264. [PMID: 39727188 PMCID: PMC11797056 DOI: 10.1093/nar/gkae1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis. Consistent with this premise, we found that Hop1 binds to ATP and that substitution of amino acid residues in the putative ATP-binding site significantly impaired its ATPase activity, suggesting that this activity is intrinsic to Hop1. Notably, K65A and N67Q substitutions in the Hop1 N-terminal HORMA domain synergistically abolished its ATPase activity, noticeably impaired its DNA-binding affinity and reduced its association with meiotic chromosomes, while enhancing the frequency of meiotic crossovers (COs). Overall, our study establishes Hop1 as a DNA-independent ATPase and reveals a potential biological function for its ATPase activity in the regulation of meiotic CO frequency.
Collapse
Affiliation(s)
- Kshitiza M Dhyani
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Suman Dash
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Sameer Joshi
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Aditi Garg
- Computational and Data Sciences, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Debnath Pal
- Computational and Data Sciences, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| |
Collapse
|
2
|
Liu W, Lei Q, van Pelt AMM, Hamer G. Repeated ionizing radiation exposure induces TRIP13 expression, conferring radioresistance in lung cancer cells. Sci Rep 2025; 15:985. [PMID: 39762328 PMCID: PMC11704074 DOI: 10.1038/s41598-024-84592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is a common treatment modality for lung cancer, and resistance to radiation can significantly affect treatment outcomes. We recently described that lung cancer cells that express more germ cell cancer genes (GC genes, genes that are usually restricted to the germ line) can repair DNA double-strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation than cells that express fewer GC genes. The gene encoding TRIP13 appeared to play a large role in this malignant phenotype. However, the molecular regulatory mechanism of TRIP13 in radiation resistance remained largely unknown. Here, we show that TRIP13 is a key contributor to non-small cell lung cancer (NSCLC) treatment resistance, particularly in patients following radiation treatment, for whom levels of TRIP13 expression are correlated with a poor prognosis. Repeated irradiation of led to an increase of basal TRIP13 levels and radioresistance. This effect of radioresistance could be enhanced or abrogated by overexpressing or knocking out TRIP13. Elevated TRIP13 is also correlated with enhanced repair of radiation-induced DNA damage. We further showed the proteins NBS1 and RAD51 (homologous recombination. HR) and XRCC5 (non-homologous end-joining, NHEJ) to act downstream of TRIP13, although inhibition of TRIP13 mostly reduced the HR associated proteins in response to induced resistance to irradiation. This study elucidates a novel mechanism of treatment resistance in NSCLC cells, in which TRIP13 promotes HR mediated DNA repair and resistance to ionizing radiation.
Collapse
Affiliation(s)
- Wenqing Liu
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands
- Department of Physiology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands.
| |
Collapse
|
3
|
Chen C, Li P, Fan G, Yang E, Jing S, Shi Y, Gong Y, Zhang L, Wang Z. Role of TRIP13 in human cancer development. Mol Biol Rep 2024; 51:1088. [PMID: 39436503 DOI: 10.1007/s11033-024-10012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
As an AAA + ATPase, thyroid hormone receptor interacting protein 13 (TRIP13) primarily functions in DNA double-strand break repair, chromosome recombination, and cell cycle checkpoint regulation; aberrant expression of TRIP13 can result in chromosomal instability (CIN). According to recent research, TRIP13 is aberrantly expressed in a variety of cancers, and a patient's poor prognosis and tumor stage are strongly correlated with high expression of TRIP13. Tumor cell and subcutaneous xenograft growth can be markedly inhibited by TRIP13 knockdown or TRIP13 inhibitor administration. In the initiation and advancement of human malignancies, TRIP13 seems to function as an oncogene. Based on available data, TRIP13 may function as a biological target and biomarker for cancer. The creation of inhibitors that specifically target TRIP13 may present novel approaches to treating cancer.
Collapse
Affiliation(s)
- Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Pan Li
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Enguang Yang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Suoshi Jing
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Luyang Zhang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, NO.82 Linxia Road, Chengguan District Lanzhou, Lanzhou, Gansu Province, 730030, PR China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, Gansu Province, 730030, PR China.
| |
Collapse
|
4
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Abstract
Sexual reproduction and the specialized cell division it relies upon, meiosis, are biological processes that present an incredible degree of both evolutionary conservation and divergence. One clear example of this paradox is the role of the evolutionarily ancient PCH-2/HORMAD module during meiosis. On one hand, the complex, and sometimes disparate, meiotic defects observed when PCH-2 and/or the meiotic HORMADS are mutated in different model systems have prevented a straightforward characterization of their conserved functions. On the other hand, these functional variations demonstrate the impressive molecular rewiring that accompanies evolution of the meiotic processes these factors are involved in. While the defects observed in pch-2 mutants appear to vary in different systems, in this review, I argue that PCH-2 has a conserved meiotic function: to coordinate meiotic recombination with synapsis to ensure an appropriate number and distribution of crossovers. Further, given the dramatic variation in how the events of recombination and synapsis are themselves regulated in different model systems, the mechanistic differences in PCH-2 and meiotic HORMAD function make biological sense when viewed as species-specific elaborations layered onto this fundamental, conserved role.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
6
|
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3012-3027. [PMID: 33502451 PMCID: PMC8023211 DOI: 10.1093/jxb/erab035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 05/23/2023]
Abstract
Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes.
Collapse
Affiliation(s)
- Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
7
|
Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Res 2021; 49:879-890. [PMID: 33406239 PMCID: PMC7826270 DOI: 10.1093/nar/gkaa1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) made during meiosis are repaired by recombination with the homologous chromosome to generate, at selected sites, reciprocal crossovers that are critical for the proper separation of homologs in the first meiotic division. Backup repair processes can compensate when the normal meiotic recombination processes are non-functional. We describe a novel backup repair mechanism that occurs when the homologous chromosome is not available in Drosophila melanogaster meiosis. In the presence of a previously described mutation (Mcm5A7) that disrupts chromosome pairing, DSB repair is initiated by homologous recombination but is completed by non-homologous end joining (NHEJ). Remarkably, this process yields precise repair products. Our results provide support for a recombination intermediate recently proposed in mouse meiosis, in which an oligonucleotide bound to the Spo11 protein that catalyzes DSB formation remains bound after resection. We propose that this oligonucleotide functions as a primer for fill-in synthesis to allow scarless repair by NHEJ. We argue that this is a conserved repair mechanism that is likely to be invoked to overcome occasional challenges in normal meiosis.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Carolyn A Turcotte
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Margaret C Miller
- Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA.,Integrative Program in Biological and Genome Sciences, 250 Bell Tower Drive, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Li ZH, Lei L, Fei LR, Huang WJ, Zheng YW, Yang MQ, Wang Z, Liu CC, Xu HT. TRIP13 promotes the proliferation and invasion of lung cancer cells via the Wnt signaling pathway and epithelial-mesenchymal transition. J Mol Histol 2021; 52:11-20. [PMID: 33128167 DOI: 10.1007/s10735-020-09919-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) is an ATPase that has been found to be overexpressed in many tumors. The aim of this study was to investigate the role of TRIP13 and its mechanism of action in lung cancer. The expression of TRIP13 was examined in lung cancer tissues and corresponding normal lung tissues by western blotting. TRIP13 was overexpressed or knocked down by transient transfection or siRNA interference in lung cancer cells, respectively. The expression of key proteins associated with the Wnt signaling pathway and epithelial-mesenchymal transition (EMT) was assessed. The interaction between TRIP13 and low-density lipoprotein receptor-related protein 6 (LRP6) was examined by co-immunoprecipitation and laser confocal immunofluorescence. Moreover, this study determined the proliferative and invasive ability of cells through colony formation, cell proliferation, and Matrigel invasion assays. The expression of TRIP13 was higher in lung cancer tissues than in normal lung tissues (p = 0.002), and this correlated with poor patient prognosis (p < 0.001). In addition, overexpression of TRIP13 enhanced the levels of active β-catenin and target proteins of the Wnt signaling pathways (p < 0.05). This study found that TRIP13 can co-localize and bind with LRP6. Furthermore, overexpression of TRIP13 caused the upregulation of N-cadherin, Snail, and vimentin, and the downregulation of E-cadherin (p < 0.05). The aforementioned results were reversed after knocking down the expression of TRIP13 (p < 0.05). TRIP13 is highly expressed in lung cancers, indicating poor prognosis. overexpression of TRIP13 promotes the proliferative and invasive ability of lung cancer cells via the activation of Wnt signaling pathway and EMT.
Collapse
Affiliation(s)
- Zhi-Han Li
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Lei Lei
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Liang-Ru Fei
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Wen-Jing Huang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Yi-Wen Zheng
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Mai-Qing Yang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Zhao Wang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Chen-Chen Liu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Hong-Tao Xu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
9
|
Tekle YI, Wang F, Heidari A, Stewart AJ. Differential gene expression analysis and cytological evidence reveal a sexual stage of an amoeba with multiparental cellular and nuclear fusion. PLoS One 2020; 15:e0235725. [PMID: 33147262 PMCID: PMC7641356 DOI: 10.1371/journal.pone.0235725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Sex is a hallmark of eukaryotes but its evolution in microbial eukaryotes is poorly elucidated. Recent genomic studies revealed microbial eukaryotes possess a genetic toolkit necessary for sexual reproduction. However, the mechanism of sexual development in a majority of microbial eukaryotes including amoebozoans is poorly characterized. The major hurdle in studying sex in microbial eukaryotes is a lack of observational evidence, primarily due to its cryptic nature. In this study, we used a tractable fusing amoeba, Cochliopodium, to investigate sexual development using stage-specific Differential Gene Expression (DGE) and cytological analyses. Both DGE and cytological results showed that most of the meiosis and sex-related genes are upregulated in Cochliopodium undergoing fusion in laboratory culture. Relative gene ontology (GO) category representations in unfused and fused cells revealed a functional skew of the fused transcriptome toward DNA metabolism, nucleus and ligases that are suggestive of a commitment to sexual development. However, the GO categories of unfused cells were dominated by metabolic pathways and other processes indicative of a vegetative phase. Our study provides strong evidence that the fused cells represent a sexual stage in Cochliopodium. Our findings have further implications in understanding the evolution and mechanism of inheritance involving multiparents in other eukaryotes with a similar reproductive strategy.
Collapse
Affiliation(s)
- Yonas I. Tekle
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
- * E-mail:
| | - Fang Wang
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Alireza Heidari
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | | |
Collapse
|
10
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
11
|
Lu S, Qian J, Guo M, Gu C, Yang Y. Insights into a Crucial Role of TRIP13 in Human Cancer. Comput Struct Biotechnol J 2019; 17:854-861. [PMID: 31321001 PMCID: PMC6612527 DOI: 10.1016/j.csbj.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) plays a key role in regulating mitotic processes, including spindle assembly checkpoint and DNA repair pathways, which may account for Chromosome instability (CIN). As CIN is a predominant hallmark of cancer, TRIP13 may act as a tumor susceptibility locus. Amplification of TRIP13 has been observed in various human cancers and implicated in several aspects of malignant transformation, including cancer cell proliferation, drug resistance and tumor progression. Here, we discussed the functional significance of TRIP13 in cell progression, highlighted the recent findings on the aberrant expression in human cancers and emphasized its significance for the therapeutic potential.
Collapse
Affiliation(s)
- S Lu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - J Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - M Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - C Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Y Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 0Nanjing, China
| |
Collapse
|
12
|
Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint. Chromosoma 2019; 128:297-316. [PMID: 30859296 DOI: 10.1007/s00412-019-00696-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The meiotic recombination checkpoint blocks meiotic cell cycle progression in response to synapsis and/or recombination defects to prevent aberrant chromosome segregation. The evolutionarily conserved budding yeast Pch2TRIP13 AAA+ ATPase participates in this pathway by supporting phosphorylation of the Hop1HORMAD adaptor at T318. In the wild type, Pch2 localizes to synapsed chromosomes and to the unsynapsed rDNA region (nucleolus), excluding Hop1. In contrast, in synaptonemal complex (SC)-defective zip1Δ mutants, which undergo checkpoint activation, Pch2 is detected only on the nucleolus. Alterations in some epigenetic marks that lead to Pch2 dispersion from the nucleolus suppress zip1Δ-induced checkpoint arrest. These observations have led to the notion that Pch2 nucleolar localization could be important for the meiotic recombination checkpoint. Here we investigate how Pch2 chromosomal distribution impacts checkpoint function. We have generated and characterized several mutations that alter Pch2 localization pattern resulting in aberrant Hop1 distribution and compromised meiotic checkpoint response. Besides the AAA+ signature, we have identified a basic motif in the extended N-terminal domain critical for Pch2's checkpoint function and localization. We have also examined the functional relevance of the described Orc1-Pch2 interaction. Both proteins colocalize in the rDNA, and Orc1 depletion during meiotic prophase prevents Pch2 targeting to the rDNA allowing unwanted Hop1 accumulation on this region. However, Pch2 association with SC components remains intact in the absence of Orc1. We finally show that checkpoint activation is not affected by the lack of Orc1 demonstrating that, in contrast to previous hypotheses, nucleolar localization of Pch2 is actually dispensable for the meiotic checkpoint.
Collapse
|
13
|
Subramanian VV, Zhu X, Markowitz TE, Vale-Silva LA, San-Segundo PA, Hollingsworth NM, Keeney S, Hochwagen A. Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 2019; 10:970. [PMID: 30814509 PMCID: PMC6393486 DOI: 10.1038/s41467-019-08875-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022] Open
Abstract
Faithful meiotic chromosome inheritance and fertility rely on the stimulation of meiotic crossover recombination by potentially genotoxic DNA double-strand breaks (DSBs). To avoid excessive damage, feedback mechanisms down-regulate DSBs, likely in response to initiation of crossover repair. In Saccharomyces cerevisiae, this regulation requires the removal of the conserved DSB-promoting protein Hop1/HORMAD during chromosome synapsis. Here, we identify privileged end-adjacent regions (EARs) spanning roughly 100 kb near all telomeres that escape DSB down-regulation. These regions retain Hop1 and continue to break in pachynema despite normal synaptonemal complex deposition. Differential retention of Hop1 requires the disassemblase Pch2/TRIP13, which preferentially removes Hop1 from telomere-distant sequences, and is modulated by the histone deacetylase Sir2 and the nucleoporin Nup2. Importantly, the uniform size of EARs among chromosomes contributes to disproportionately high DSB and repair signals on short chromosomes in pachynema, suggesting that EARs partially underlie the curiously high recombination rate of short chromosomes.
Collapse
Affiliation(s)
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Amazon AI, Seattle, WA, 98101, USA
| | - Tovah E Markowitz
- Department of Biology, New York University, New York, NY, 10003, USA.,Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Luis A Vale-Silva
- Department of Biology, New York University, New York, NY, 10003, USA.,BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007, Salamanca, Spain
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
14
|
Dong L, Ding H, Li Y, Xue D, Li Z, Liu Y, Zhang T, Zhou J, Wang P. TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer. Int J Biol Macromol 2018; 121:200-206. [PMID: 30267820 DOI: 10.1016/j.ijbiomac.2018.09.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) has been reported to be overexpressed in serval types of human cancers, and regulate tumor cell proliferation, migration and invasion. However, the role of TRIP13 in prostate cancer was still unclear. In our study, the correlation between TRIP13 expression and clinical parameters including prognosis was evaluated in 160 prostate cancer patients. Moreover, the MTT assay, cell migration and invasion assays were performed to assess the effect of TRIP13 on prostate cancer cell biological behaviour. In our results, the expression status of TRIP13 was observed to be elevated in prostate cancer tissue samples through analyzing microarray (GSE55945). Furthermore, mRNA and protein TRIP13 expression were confirmed to be overexpressed in prostate cancer tissue samples and cell lines. High-expression of TRIP13 was correlated with present lymph node involvement, distant metastasis, high Gleason score, levels of serum PSA and poor prognosis in prostate cancer patients. The gain-of-function and loss-of-function studies suggested that TRIP13 functioned as oncogene to regulate prostate cancer cell proliferation, migration, invasion through controlling YWHAZ and epithelial-mesenchymal transition (EMT)-associated genes. In conclusion, TRIP13 is correlated with clinical progression and poor prognosis, and serves as oncogene in prostate cancer.
Collapse
Affiliation(s)
- Liming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Honglin Ding
- Department of Urology, The Affiliated Hospital of Chifeng Medical College, Chifeng 024000, Inner Mongolia, China
| | - Yanpei Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zhi Li
- Department of Ethnpharmacology, School of Pharmaeutical Scineces, China Medical University, Shenyang 110000, Liaoning, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Teng Zhang
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Jian Zhou
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
15
|
Tao Y, Yang G, Yang H, Song D, Hu L, Xie B, Wang H, Gao L, Gao M, Xu H, Xu Z, Wu X, Zhang Y, Zhu W, Zhan F, Shi J. TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget 2018; 8:26718-26731. [PMID: 28157697 PMCID: PMC5432292 DOI: 10.18632/oncotarget.14957] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.,Shanghai Chenshan Plant Science Research Center, Chienes Academy of Sciences, Shanghai 201602, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
16
|
Kshirsagar R, Ghodke I, Muniyappa K. Saccharomyces cerevisiae Red1 protein exhibits nonhomologous DNA end-joining activity and potentiates Hop1-promoted pairing of double-stranded DNA. J Biol Chem 2017. [PMID: 28642366 DOI: 10.1074/jbc.m117.796425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidation of the function of synaptonemal complex (SC) in Saccharomyces cerevisiae has mainly focused on in vivo analysis of recombination-defective meiotic mutants. Consequently, significant gaps remain in the mechanistic understanding of the activities of various SC proteins and the functional relationships among them. S. cerevisiae Hop1 and Red1 are essential structural components of the SC axial/lateral elements. Previous studies have demonstrated that Hop1 is a structure-selective DNA-binding protein exhibiting high affinity for the Holliday junction and promoting DNA bridging, condensation, and pairing between double-stranded DNA molecules. However, the exact mode of action of Red1 remains unclear, although it is known to interact with Hop1 and to suppress the spore viability defects of hop1 mutant alleles. Here, we report the purification and functional characterization of the full-length Red1 protein. Our results revealed that Red1 forms a stable complex with Hop1 in vitro and provided quantitative insights into their physical interactions. Mechanistically, Red1 preferentially associated with the Holliday junction and 3-way junction rather than with single- or double-stranded DNA with overhangs. Although Hop1 and Red1 exhibited similar binding affinities toward several DNA substrates, the two proteins displayed some significant differences. Notably, Red1, by itself, lacked DNA-pairing ability; however, it potentiated Hop1-promoted intermolecular pairing between double-stranded DNA molecules. Moreover, Red1 exhibited nonhomologous DNA end-joining activity, thus revealing an unexpected role for Red1 in recombination-based DNA repair. Collectively, this study presents the first direct insights into Red1's mode of action and into the mechanism underlying its role in chromosome synapsis and recombination.
Collapse
Affiliation(s)
- Rucha Kshirsagar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Indrajeet Ghodke
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Modulating Crossover Frequency and Interference for Obligate Crossovers in Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2017; 7:1511-1524. [PMID: 28315832 PMCID: PMC5427503 DOI: 10.1534/g3.117.040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiotic crossover frequencies show wide variation among organisms. But most organisms maintain at least one crossover per homolog pair (obligate crossover). In Saccharomyces cerevisiae, previous studies have shown crossover frequencies are reduced in the mismatch repair related mutant mlh3Δ and enhanced in a meiotic checkpoint mutant pch2Δ by up to twofold at specific chromosomal loci, but both mutants maintain high spore viability. We analyzed meiotic recombination events genome-wide in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ mutants to test the effect of variation in crossover frequency on obligate crossovers. mlh3Δ showed ∼30% genome-wide reduction in crossovers (64 crossovers per meiosis) and loss of the obligate crossover, but nonexchange chromosomes were efficiently segregated. pch2Δ showed ∼50% genome-wide increase in crossover frequency (137 crossovers per meiosis), elevated noncrossovers as well as loss of chromosome size dependent double-strand break formation. Meiotic defects associated with pch2∆ did not cause significant increase in nonexchange chromosome frequency. Crossovers were restored to wild-type frequency in the double mutant mlh3Δ pch2Δ (100 crossovers per meiosis), but obligate crossovers were compromised. Genetic interference was reduced in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ. Triple mutant analysis of mlh3Δ pch2Δ with other resolvase mutants showed that most of the crossovers in mlh3Δ pch2Δ are made through the Mus81-Mms4 pathway. These results are consistent with a requirement for increased crossover frequencies in the absence of genetic interference for obligate crossovers. In conclusion, these data suggest crossover frequencies and the strength of genetic interference in an organism are mutually optimized to ensure obligate crossovers.
Collapse
|
18
|
Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response. G3-GENES GENOMES GENETICS 2016; 6:3869-3881. [PMID: 27678521 PMCID: PMC5144958 DOI: 10.1534/g3.116.033910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.
Collapse
|
19
|
Herruzo E, Ontoso D, González-Arranz S, Cavero S, Lechuga A, San-Segundo PA. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects. Nucleic Acids Res 2016; 44:7722-41. [PMID: 27257060 PMCID: PMC5027488 DOI: 10.1093/nar/gkw506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Sara González-Arranz
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Ana Lechuga
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
20
|
Nelson CR, Hwang T, Chen PH, Bhalla N. TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response. J Cell Biol 2015; 211:503-16. [PMID: 26527744 PMCID: PMC4639874 DOI: 10.1083/jcb.201505114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022] Open
Abstract
The ability of the conserved ATPase TRIP13PCH-2 to disassemble a Mad2-containing complex is critical to promote the spindle checkpoint response by contributing to the robust localization of Mad2 to unattached kinetochores. The spindle checkpoint acts during cell division to prevent aneuploidy, a hallmark of cancer. During checkpoint activation, Mad1 recruits Mad2 to kinetochores to generate a signal that delays anaphase onset. Yet, whether additional factors contribute to Mad2’s kinetochore localization remains unclear. Here, we report that the conserved AAA+ ATPase TRIP13PCH-2 localizes to unattached kinetochores and is required for spindle checkpoint activation in Caenorhabditis elegans. pch-2 mutants effectively localized Mad1 to unattached kinetochores, but Mad2 recruitment was significantly reduced. Furthermore, we show that the C. elegans orthologue of the Mad2 inhibitor p31(comet)CMT-1 interacts with TRIP13PCH-2 and is required for its localization to unattached kinetochores. These factors also genetically interact, as loss of p31(comet)CMT-1 partially suppressed the requirement for TRIP13PCH-2 in Mad2 localization and spindle checkpoint signaling. These data support a model in which the ability of TRIP13PCH-2 to disassemble a p31(comet)/Mad2 complex, which has been well characterized in the context of checkpoint silencing, is also critical for spindle checkpoint activation.
Collapse
Affiliation(s)
- Christian R Nelson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Tom Hwang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Pin-Hsi Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
21
|
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FCH. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. PLoS Genet 2015; 11:e1005372. [PMID: 26182244 PMCID: PMC4504720 DOI: 10.1371/journal.pgen.1005372] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. In the reproductive cells of many eukaryotes, a process called meiosis generates haploid gametes. During meiosis, homologous parental chromosomes (homologs) recombine forming crossovers (CO) that provide genetic variation. CO formation generates physical links called chiasmata, which are essential for accurate homolog segregation. CO control designates a sub-set of recombination precursors that will mature to form at least one chiasma between each homolog pair. Recombination is accompanied by extensive chromosome reorganization. Formation of a proteinaceous axis organizes the pairs of sister chromatids of each homolog into conjoined linear looped chromatin arrays. Pairs of homologs then align and synapse becoming closely associated along their length by a protein structure, the synaptonemal complex (SC). The SC is disassembled at the end of prophase I and recombination is completed. We have investigated the link between recombination and chromosome remodelling by analysing the role of a protein, PCH2, which we show is required for remodelling of the chromosome axis during SC formation. In wild type, immunolocalization reveals depletion of the axis-associated signal of the axis component, ASY1, along synapsed regions of the chromosomes. In the absence of PCH2, the ASY1 signal is not depleted from the chromosome axis and the SC does not form normally. Although this defect in chromosome remodelling has no obvious effect on CO designation, CO maturation is perturbed such that the formation of at least one CO per homolog pair no longer occurs.
Collapse
Affiliation(s)
- Christophe Lambing
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Komsun Nuntasoontorn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and Carolina Center for Genome Scientists, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianhua Yang
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Vader G. Pch2TRIP13: controlling cell division through regulation of HORMA domains. Chromosoma 2015; 124:333-9. [DOI: 10.1007/s00412-015-0516-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/24/2022]
|
23
|
Joshi N, Brown MS, Bishop DK, Börner GV. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels. Mol Cell 2015; 57:797-811. [PMID: 25661491 DOI: 10.1016/j.molcel.2014.12.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022]
Abstract
During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome.
Collapse
Affiliation(s)
- Neeraj Joshi
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - M Scott Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Committee on Genetics, University of Chicago, Chicago, IL 60637, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
25
|
Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, Scanlon CS, van Tubergen E, Inglehart RC, Metwally T, Mani RS, Yocum A, Nyati MK, Castilho RM, Varambally S, Chinnaiyan AM, D'Silva NJ. TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun 2014; 5:4527. [PMID: 25078033 PMCID: PMC4130352 DOI: 10.1038/ncomms5527] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Head and neck cancer (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment-resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment-resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate non homologous end joining (NHEJ), as TRIP13 binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nickole Russo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Min Liu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emily Bellile
- Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nallasivam Palanisamy
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina S Scanlon
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Elizabeth van Tubergen
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald C Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tarek Metwally
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ram-Shankar Mani
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Anastasia Yocum
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sooryanarayana Varambally
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Arul M Chinnaiyan
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nisha J D'Silva
- 1] Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
26
|
Deshong AJ, Ye AL, Lamelza P, Bhalla N. A quality control mechanism coordinates meiotic prophase events to promote crossover assurance. PLoS Genet 2014; 10:e1004291. [PMID: 24762417 PMCID: PMC3998905 DOI: 10.1371/journal.pgen.1004291] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/21/2014] [Indexed: 01/12/2023] Open
Abstract
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase. The production of sperm and eggs for sexual reproduction depends on meiosis. During this specialized cell division, homologous chromosomes are linked by at least one crossover recombination event, or chiasma, to promote their proper segregation. How events in meiotic prophase are coordinated to contribute to crossover assurance is not well understood. Here, we show that C. elegans PCH-2 regulates a variety of events during meiotic prophase to promote crossover assurance. In the absence of pch-2, pairing, synapsis and recombination are accelerated, resulting in defects in synapsis and crossover formation. We propose that PCH-2 restrains the events of meiotic prophase to coordinate them, ensure their fidelity and guarantee that each homolog pair has at least one crossover to promote proper meiotic chromosome segregation.
Collapse
Affiliation(s)
- Alison J. Deshong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Alice L. Ye
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Piero Lamelza
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Pch2 is a hexameric ring ATPase that remodels the chromosome axis protein Hop1. Proc Natl Acad Sci U S A 2013; 111:E44-53. [PMID: 24367111 DOI: 10.1073/pnas.1310755111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In budding yeast the pachytene checkpoint 2 (Pch2) protein regulates meiotic chromosome axis structure by maintaining the domain-like organization of the synaptonemal complex proteins homolog pairing 1 (Hop1) and molecular zipper 1 (Zip1). Pch2 has also been shown to modulate meiotic double-strand break repair outcomes to favor recombination between homologs, play an important role in the progression of meiotic recombination, and maintain ribosomal DNA stability. Pch2 homologs are present in fruit flies, worms, and mammals, however the molecular mechanism of Pch2 function is unknown. In this study we provide a unique and detailed biochemical analysis of Pch2. We find that purified Pch2 is an AAA+ (ATPases associated with diverse cellular activities) protein that oligomerizes into single hexameric rings in the presence of nucleotides. In addition, we show Pch2 binds to Hop1, a critical axial component of the synaptonemal complex that establishes interhomolog repair bias, in a nucleotide-dependent fashion. Importantly, we demonstrate that Pch2 displaces Hop1 from large DNA substrates and that both ATP binding and hydrolysis by Pch2 are required for Pch2-Hop1 transactions. Based on these and previous cell biological observations, we suggest that Pch2 impacts meiotic chromosome function by directly regulating Hop1 localization.
Collapse
|
28
|
Lao JP, Cloud V, Huang CC, Grubb J, Thacker D, Lee CY, Dresser ME, Hunter N, Bishop DK. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS Genet 2013; 9:e1003978. [PMID: 24367271 PMCID: PMC3868528 DOI: 10.1371/journal.pgen.1003978] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination. Meiosis is the specialized cell division that produces gametes by precisely reducing the chromosome copy number from two to one. Accurate segregation of homologous chromosome pairs requires they be connected by crossing-over, the precise breakage and exchange of chromosome arms that is carried out by a process called recombination. Recombination is regulated so each pair of homologous chromosomes becomes connected by at least one crossover. We studied the roles of two recombination proteins, Rad51 and Dmc1, which can act directly to join homologous DNA molecules. Our evidence supports the idea that Dmc1 is the dominant joining activity, while Rad51 acts indirectly with other proteins to support and regulate Dmc1. Furthermore, Hed1, an inhibitor of Rad51's DNA joining activity, is also shown to enhance the efficiency of crossing-over. Cells in which Rad51 is activated to promote DNA joining in place of Dmc1 have unregulated and inefficient crossing-over that often leaves chromosome pairs without the requisite crossover. Despite these defects, most cells that use Rad51 in place of Dmc1 complete meiosis and produce high levels of crossovers. Our results indicate that compensatory processes ensure that meiotic cells accumulate high levels of crossover intermediates before progressing to the first round of chromosome segregation.
Collapse
Affiliation(s)
- Jessica P. Lao
- Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Genetics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Veronica Cloud
- Committee on Genetics, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Chu-Chun Huang
- Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
| | - Drew Thacker
- Weil Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael E. Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute and Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Genetics Graduate Group, University of California, Davis, Davis, California, United States of America
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
- * E-mail: (NH); (DKB)
| | - Douglas K. Bishop
- Committee on Genetics, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Cummings Life Science Center, Chicago, Illinois, United States of America
- * E-mail: (NH); (DKB)
| |
Collapse
|
29
|
Usui T, Kanehara Y. Elevated Rad53 kinase activity influences formation and interhomolog repair of meiotic DNA double-strand breaks in budding yeast. Biochem Biophys Res Commun 2013; 441:593-9. [PMID: 24183725 DOI: 10.1016/j.bbrc.2013.10.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 01/15/2023]
Abstract
Meiotic cells generate physiological programmed DNA double-strand breaks (DSBs) to initiate meiotic recombination. Interhomolog repair of the programmed DSBs by meiotic recombination is vital to ensure accurate chromosome segregation at meiosis I to produce normal gametes. In budding yeast, the DNA damage checkpoint kinase Rad53 is activated by DSBs which accidentally occur as DNA lesions in mitosis and meiosis; however, meiotic programmed DSBs which occur at approximately 160 loci per genome fail to activate the kinase. Thus, Rad53 activation appears to be silenced in response to meiotic programmed DSBs. In this study, to address the biological significance of Rad53's insensitivity to meiotic DSBs, we examined the effects of Rad53 overexpression on meiotic processes. The overexpression led to partial activation of Rad53, uncovering that the negative impacts of Rad53 kinase activation on meiotic progression, and formation and interhomolog repair of meiotic programmed DSBs.
Collapse
Affiliation(s)
- Takehiko Usui
- Laboratory of Genome and Chromosome Functions, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
30
|
Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLoS Genet 2013; 9:e1003545. [PMID: 23825959 PMCID: PMC3694840 DOI: 10.1371/journal.pgen.1003545] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or “DSB homeostasis”, might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks. Meiosis is a specialized cell division that underpins sexual reproduction. It begins with a diploid cell carrying both parental copies of each chromosome, and ends with four haploid cells, each containing only one copy. An essential feature of meiosis is meiotic recombination, during which the programmed generation of DNA double-strand-breaks (DSBs) is followed by the production of crossover(s) between two parental homologs, which facilitates their correct distribution to daughter nuclei. Failure to generate DSBs leads to errors in homolog disjunction, which produces inviable gametes. Although DSBs are essential for meiosis, each break represents a potentially lethal damage; as such, its formation must be tightly regulated. The evolutionarily conserved ATM/ATR family proteins were implicated in this control; nevertheless, the mechanism by which such control could be implemented remains elusive. Here we demonstrate that Tel1/Mec1 down-regulate meiotic DSB formation by phosphorylating Rec114, an essential component of the Spo11 complex. We also observed that Rec114 activity can be further down-regulated by its removal from chromosomes and subsequent degradation during later stages in meiosis. Evidence presented here provides an insight into the ways in which the number of meiotic DSBs might be maintained at developmentally programmed level.
Collapse
Affiliation(s)
- Jesús A. Carballo
- Department of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail: (JAC); (RSC)
| | - Silvia Panizza
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 1, Vienna, Austria
- (IMBA) Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse, Vienna, Austria
| | | | - Anthony L. Johnson
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | - Marco Geymonat
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Valérie Borde
- CNRS UMR218, Institut Curie/Centre de Recherche, UMR218, Pavillon Pasteur, Paris, France
| | - Franz Klein
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 1, Vienna, Austria
| | - Rita S. Cha
- Department of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail: (JAC); (RSC)
| |
Collapse
|
31
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
32
|
La Volpe A, Barchi M. Meiotic double strand breaks repair in sexually reproducing eukaryotes: We are not all equal. Exp Cell Res 2012; 318:1333-9. [DOI: 10.1016/j.yexcr.2012.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
|
33
|
Farmer S, Hong EJE, Leung WK, Argunhan B, Terentyev Y, Humphryes N, Toyoizumi H, Tsubouchi H. Budding yeast Pch2, a widely conserved meiotic protein, is involved in the initiation of meiotic recombination. PLoS One 2012; 7:e39724. [PMID: 22745819 PMCID: PMC3382142 DOI: 10.1371/journal.pone.0039724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/25/2012] [Indexed: 01/15/2023] Open
Abstract
Budding yeast Pch2 protein is a widely conserved meiosis-specific protein whose role is implicated in the control of formation and displacement of meiotic crossover events. In contrast to previous studies where the function of Pch2 was implicated in the steps after meiotic double-strand breaks (DSBs) are formed, we present evidence that Pch2 is involved in meiotic DSB formation, the initiation step of meiotic recombination. The reduction of DSB formation caused by the pch2 mutation is most prominent in the sae2 mutant background, whereas the impact remains mild in the rad51 dmc1 double mutant background. The DSB reduction is further pronounced when pch2 is combined with a hypomorphic allele of SPO11. Interestingly, the level of DSB reduction is highly variable between chromosomes, with minimal impact on small chromosomes VI and III. We propose a model in which Pch2 ensures efficient formation of meiotic DSBs which is necessary for igniting the subsequent meiotic checkpoint responses that lead to proper differentiation of meiotic recombinants.
Collapse
Affiliation(s)
- Sarah Farmer
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | - Wing-Kit Leung
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Bilge Argunhan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Yaroslav Terentyev
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hiroshi Toyoizumi
- Life Sciences, University of Sussex, Brighton, United Kingdom
- Graduate School of Accounting, Waseda University, Tokyo, Japan
- Department of Applied Mathematics, Waseda University, Tokyo, Japan
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Ho HC, Burgess SM. Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis. PLoS Genet 2011; 7:e1002351. [PMID: 22072981 PMCID: PMC3207854 DOI: 10.1371/journal.pgen.1002351] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022] Open
Abstract
Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes. Sexually reproductive organisms utilize meiosis to produce gametes (e.g. egg and sperm). During meiosis, chromosome numbers reduce to half (haploid) and fertilization restores their numbers to a diploid state so that ploidy can be maintained throughout generations. Meiosis involves two successive divisions (meiosis I and meiosis II) that follow a single round of DNA replication. In meiosis I homologous chromosomes segregate, whereas in meiosis II sister chromatids segregate. Failure to properly segregate chromosomes leads to the formation of aneuploid gametes, which are a leading cause of birth defects and pregnancy loss in humans. In most organisms, proper chromosome segregation in meiosis I requires meiotic recombination, where the repair of deliberately introduced double-strand breaks (DSBs) generates physical connections between homologous chromosomes. Importantly, DSBs must be repaired in a timely fashion and coordinated with the meiotic cycle by the recombination checkpoint. Here we investigated the role of Pch2, an AAA+-ATPase protein, in regulating chromosome events during meiotic prophase. We found Pch2 functions with Tel1 (homolog of ATM) and the MRX component Xrs2 to signal blunt-ended, unprocessed DSB intermediates of meiotic recombination. In addition, physical interaction between Pch2 and Xrs2 appears to play additional roles during meiosis, independent of Tel1 function.
Collapse
Affiliation(s)
- Hsuan-Chung Ho
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Pradillo M, Santos JL. The template choice decision in meiosis: is the sister important? Chromosoma 2011; 120:447-54. [PMID: 21826413 DOI: 10.1007/s00412-011-0336-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/30/2022]
Abstract
Recombination between homologous chromosomes is crucial to ensure their proper segregation during meiosis. This is achieved by regulating the choice of recombination template. In mitotic cells, double-strand break repair with the sister chromatid appears to be preferred, whereas interhomolog recombination is favoured during meiosis. However, in the last year, several studies in yeast have shown the importance of the meiotic recombination between sister chromatids. Although this thinking seems to be new, evidences for sister chromatid exchange during meiosis were obtained more than 50 years ago in non-model organisms. In this mini-review, we comment briefly on the most recent advances in this hot topic and also describe observations which suggest the existence of inter-sister repair during meiotic recombination. For instance, the behaviour of mammalian XY bivalents and that of trivalents in heterozygotes for chromosomal rearrangements are cited as examples. The "rediscovering" of the requirement for the sister template, although it seems to occur at a low frequency, will probably prompt further investigations in organisms other than yeast to understand the complexity of the partner choice during meiosis.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Universidad Complutense de Madrid, Spain.
| | | |
Collapse
|