1
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Low overlap of transcription factor DNA binding and regulatory targets. Nature 2025:10.1038/s41586-025-08916-0. [PMID: 40240607 DOI: 10.1038/s41586-025-08916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes1,2. How multiple TFs cooperate to regulate individual genes is still unclear. In yeast, most TFs are thought to regulate transcription via binding to upstream activating sequences, which are situated within a few hundred base pairs upstream of the regulated gene3. Although this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way. Here we integrated information on the binding and expression targets for the near-complete set of yeast TFs and show that, contrary to expectations, there are few TFs with dedicated activator or repressor roles, and that most TFs have a dual function. Although nearly all protein-coding genes are regulated by one or more TFs, our analysis revealed limited overlap between TF binding and gene regulation. Rapid depletion of many TFs also revealed many regulatory targets that were distant from detectable TF binding sites, suggesting unexpected regulatory mechanisms. Our study provides a comprehensive survey of TF functions and offers insights into interactions between the set of TFs expressed in a single cell type and how they contribute to the complex programme of gene regulation.
Collapse
Affiliation(s)
| | | | - Rafal Donczew
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Stojković L, Gligorovski V, Geramimanesh M, Labagnara M, Rahi SJ. Automated plasmid design for marker-free genome editing in budding yeast. G3 (BETHESDA, MD.) 2025; 15:jkae297. [PMID: 39688855 PMCID: PMC11917472 DOI: 10.1093/g3journal/jkae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Scarless genome editing in budding yeast with elimination of the selection marker has many advantages. Some markers such as URA3 and TRP1 can be recycled through counterselection. This permits seamless genome modification with pop-in/pop-out, in which a DNA construct first integrates in the genome and, subsequently, homologous regions recombine and excise undesired sequences. Popular approaches for creating such constructs use oligonucleotides and PCR. However, the use of oligonucleotides has many practical disadvantages. With the rapid reduction in price, synthesizing custom DNA sequences in specific plasmid backbones has become an appealing alternative. For designing plasmids for seamless pop-in/pop-out gene tagging or deletion, there are a number of factors to consider. To create only the shortest DNA sequences necessary, avoid errors in manual design, specify the amount of homology desired, and customize restriction sites, we created the computational tool PIPOline. Using it, we tested the ratios of homology that improve pop-out efficiency when targeting the genes HTB2 or WHI5. We supply optimal pop-in/pop-out plasmid sequences for tagging or deleting almost all S288C budding yeast open reading frames. Finally, we demonstrate how the histone variant Htb2 marked with a red fluorescent protein can be used as a cell-cycle stage marker, alternative to superfolder GFP, reducing light toxicity. We expect PIPOline to streamline genome editing in budding yeast.
Collapse
Affiliation(s)
- Lazar Stojković
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mahsa Geramimanesh
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Labagnara
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Nagar S, Mehta R, Kaur P, Sadia FZ, Reddy S, Olorunnimbe OR, Vancurova I, Vancura A. The yeast checkpoint kinase Dun1p represses transcription of RNR genes independently of catalytic activity or Rad53p during respiratory growth. J Biol Chem 2025; 301:108232. [PMID: 39880091 PMCID: PMC11914510 DOI: 10.1016/j.jbc.2025.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
One of the key events in DNA damage response is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs) required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid and glyoxylate cycles and gluconeogenesis. Dun1p, independently of its kinase activity or signaling from the upstream checkpoint kinase Rad53p, represses RNR2, RNR3, and RNR4 genes by maintaining Crt1p occupancy in the corresponding promoters. Consistently with the role of dNTPs in the regulation of mitochondrial DNA copy number, DUN1 inactivation elevates mitochondrial DNA copy number in acetate-grown cells. Together, our data reveal an unexpected role for Dun1p in transcriptional regulation of RNR2-4 and metabolic genes during growth on nonfermentable carbon source and suggest that Dun1p contributes to transcription regulation independently of its kinase activity as a structural component by binding to protein(s) involved in gene regulation.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Fatema Zohra Sadia
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Suprataptha Reddy
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | | | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
4
|
Ding Y, Li J, Jiang HL, Suo F, Shao GC, Zhang XR, Dong MQ, Liu CP, Xu RM, Du LL. The ortholog of human DNAJC9 promotes histone H3-H4 degradation and is counteracted by Asf1 in fission yeast. Nucleic Acids Res 2025; 53:gkaf036. [PMID: 39878217 PMCID: PMC11775587 DOI: 10.1093/nar/gkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth. Utilizing AlphaFold-based structural prediction, we identified a histone-binding surface on Djc9 that binds to helix α3 of H3 in a manner that precludes simultaneous helix α3-binding by Asf1. Djc9 and Asf1 indeed compete for binding to the H3-H4 dimer in vitro, and an H3-α3 mutation impeding Djc9 binding also renders Asf1 non-essential, indicating that the role of Asf1 needed for growth in fission yeast is to prevent histone binding by Djc9. In the absence of Asf1, cell growth is hindered due to unrestrained Djc9-mediated downregulation of H3 and H4. In the presence of Asf1, Djc9 confers resistance to the DNA replication inhibitor hydroxyurea and dominant negative disease-related histone mutants by promoting the degradation of superfluous or dysfunctional histones. Our findings provide new insights into the function and mechanism of this conserved histone-binding protein.
Collapse
Affiliation(s)
- Yan Ding
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - He-Li Jiang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Ran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Chao-Pei Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Lin Du
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
5
|
Shishkin SS. Moonlighting Proteins of Human and Some Other Eukaryotes. Evolutionary Aspects. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S36-S59. [PMID: 40164152 DOI: 10.1134/s0006297924602855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/02/2025]
Abstract
This review presents materials on formation of the concept of moonlighting proteins and general characteristics of different similar proteins. It is noted that the concept under consideration is based on the data on the existence in different organisms of individual genes, protein products of which have not one, but at least two fundamentally different functions, for example, depending on cellular or extracellular location. An important feature of these proteins is that their functions can be switched. As a result, in different cellular compartments or outside the cells, as well as under a number of other circumstances, one of the possible functions can be carried out, and under other conditions, another. It is emphasized that the significant interest in moonlighting proteins is due to the fact that information is currently accumulating about their involvement in many vital molecular processes (glycolysis, translation, transcription, replication, etc.). Alternative hypotheses on the evolutionary origin of moonlighting proteins are discussed.
Collapse
Affiliation(s)
- Sergei S Shishkin
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
6
|
Chatzitheodoridou D, Bureik D, Padovani F, Nadimpalli KV, Schmoller KM. Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients. EMBO J 2024; 43:5141-5168. [PMID: 39271795 PMCID: PMC11535423 DOI: 10.1038/s44318-024-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.
Collapse
Affiliation(s)
- Dimitra Chatzitheodoridou
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kalyan V Nadimpalli
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
7
|
Oberbeckmann E, Oudelaar AM. Genome organization across scales: mechanistic insights from in vitro reconstitution studies. Biochem Soc Trans 2024; 52:793-802. [PMID: 38451192 PMCID: PMC11088924 DOI: 10.1042/bst20230883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Eukaryotic genomes are compacted and organized into distinct three-dimensional (3D) structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These chromatin structures play an important role in the regulation of transcription and other nuclear processes. The molecular mechanisms that drive the formation of chromatin structures across scales and the relationship between chromatin structure and function remain incompletely understood. Because the processes involved are complex and interconnected, it is often challenging to dissect the underlying principles in the nuclear environment. Therefore, in vitro reconstitution systems provide a valuable approach to gain insight into the molecular mechanisms by which chromatin structures are formed and to determine the cause-consequence relationships between the processes involved. In this review, we give an overview of in vitro approaches that have been used to study chromatin structures across scales and how they have increased our understanding of the formation and function of these structures. We start by discussing in vitro studies that have given insight into the mechanisms of nucleosome positioning. Next, we discuss recent efforts to reconstitute larger-scale chromatin domains and loops and the resulting insights into the principles of genome organization. We conclude with an outlook on potential future applications of chromatin reconstitution systems and how they may contribute to answering open questions concerning chromatin architecture.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A. Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Haase MAB, Steenwyk JL, Boeke JD. Gene loss and cis-regulatory novelty shaped core histone gene evolution in the apiculate yeast Hanseniaspora uvarum. Genetics 2024; 226:iyae008. [PMID: 38271560 PMCID: PMC10917516 DOI: 10.1093/genetics/iyae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Core histone genes display a remarkable diversity of cis-regulatory mechanisms despite their protein sequence conservation. However, the dynamics and significance of this regulatory turnover are not well understood. Here, we describe the evolutionary history of core histone gene regulation across 400 million years in budding yeasts. We find that canonical mode of core histone regulation-mediated by the trans-regulator Spt10-is ancient, likely emerging between 320 and 380 million years ago and is fixed in the majority of extant species. Unexpectedly, we uncovered the emergence of a novel core histone regulatory mode in the Hanseniaspora genus, from its fast-evolving lineage, which coincided with the loss of 1 copy of its paralogous core histone genes. We show that the ancestral Spt10 histone regulatory mode was replaced, via cis-regulatory changes in the histone control regions, by a derived Mcm1 histone regulatory mode and that this rewiring event occurred with no changes to the trans-regulator, Mcm1, itself. Finally, we studied the growth dynamics of the cell cycle and histone synthesis in genetically modified Hanseniaspora uvarum. We find that H. uvarum divides rapidly, with most cells completing a cell cycle within 60 minutes. Interestingly, we observed that the regulatory coupling between histone and DNA synthesis was lost in H. uvarum. Our results demonstrate that core histone gene regulation was fixed anciently in budding yeasts, however it has greatly diverged in the Hanseniaspora fast-evolving lineage.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 435 E 30th St, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 435 E 30th St, New York, NY 10016, USA
| |
Collapse
|
9
|
Zhang X, Fawwal DV, Spangle JM, Corbett AH, Jones CY. Exploring the Molecular Underpinnings of Cancer-Causing Oncohistone Mutants Using Yeast as a Model. J Fungi (Basel) 2023; 9:1187. [PMID: 38132788 PMCID: PMC10744705 DOI: 10.3390/jof9121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Understanding the molecular basis of cancer initiation and progression is critical in developing effective treatment strategies. Recently, mutations in genes encoding histone proteins that drive oncogenesis have been identified, converting these essential proteins into "oncohistones". Understanding how oncohistone mutants, which are commonly single missense mutations, subvert the normal function of histones to drive oncogenesis requires defining the functional consequences of such changes. Histones genes are present in multiple copies in the human genome with 15 genes encoding histone H3 isoforms, the histone for which the majority of oncohistone variants have been analyzed thus far. With so many wildtype histone proteins being expressed simultaneously within the oncohistone, it can be difficult to decipher the precise mechanistic consequences of the mutant protein. In contrast to humans, budding and fission yeast contain only two or three histone H3 genes, respectively. Furthermore, yeast histones share ~90% sequence identity with human H3 protein. Its genetic simplicity and evolutionary conservation make yeast an excellent model for characterizing oncohistones. The power of genetic approaches can also be exploited in yeast models to define cellular signaling pathways that could serve as actionable therapeutic targets. In this review, we focus on the value of yeast models to serve as a discovery tool that can provide mechanistic insights and inform subsequent translational studies in humans.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
| | - Dorelle V. Fawwal
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Celina Y. Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Kulakova MV, Ghazy ESMO, Ryabov F, Stanishevskiy YM, Agaphonov MO, Alexandrov AI. Histone Abundance Quantification via Flow Cytometry of Htb2-GFP Allows Easy Monitoring of Cell Cycle Perturbations in Living Yeast Cells, Comparable to Standard DNA Staining. J Fungi (Basel) 2023; 9:1033. [PMID: 37888289 PMCID: PMC10608138 DOI: 10.3390/jof9101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Assaying changes in the amount of DNA in single cells is a well-established method for studying the effects of various perturbations on the cell cycle. A drawback of this method is the need for a fixation procedure that does not allow for in vivo study nor simultaneous monitoring of additional parameters such as fluorescence of tagged proteins or genetically encoded indicators. In this work, we report on a method of Histone Abundance Quantification (HAQ) of live yeast harboring a GFP-tagged histone, Htb2. We show that it provides data highly congruent with DNA levels, both in Saccharomyces cerevisiae and Ogataea polymorpha yeasts. The protocol for the DNA content assay was also optimized to be suitable for both Ogataea and Saccharomyces yeasts. Using the HAQ approach, we demonstrate the expected effects on the cell cycle progression for several compounds and conditions and show usability in conjunction with additional fluorophores. Thus, our data provide a simple approach that can be utilized in a wide range of studies where the effects of various stimuli on the cell cycle need to be monitored directly in living cells.
Collapse
Affiliation(s)
- Maria V. Kulakova
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, Leninskiy Ave. 33, Moscow 119071, Russia
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, Leninskiy Ave. 33, Moscow 119071, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Fedor Ryabov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, Leninskiy Ave. 33, Moscow 119071, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
| | - Michael O. Agaphonov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, Leninskiy Ave. 33, Moscow 119071, Russia
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, Leninskiy Ave. 33, Moscow 119071, Russia
- Weizmann Institute of Science, Herzl Str. 234, Rehovot 7610001, Israel
| |
Collapse
|
11
|
McPherson JME, Grossmann LC, Salzler HR, Armstrong RL, Kwon E, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. Genetics 2023; 224:iyad106. [PMID: 37279945 PMCID: PMC10411577 DOI: 10.1093/genetics/iyad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
McPherson JME, Grossmann LC, Armstrong RL, Kwon E, Salzler HR, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534544. [PMID: 37034607 PMCID: PMC10081267 DOI: 10.1101/2023.03.28.534544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is also reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E. McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C. Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L. Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R. Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
14
|
Nagar S, Mehta R, Kaur P, Liliah RT, Vancura A. Tolerance to replication stress requires Dun1p kinase and activation of the electron transport chain. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119382. [PMID: 36283478 PMCID: PMC10329874 DOI: 10.1016/j.bbamcr.2022.119382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
One of the key outcomes of activation of DNA replication checkpoint (DRC) or DNA damage checkpoint (DDC) is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), which is a prerequisite for normal progression through the S phase and for effective DNA repair. We have recently shown that DDC increases aerobic metabolism and activates the electron transport chain (ETC) to elevate ATP production and dNTP synthesis by repressing transcription of histone genes, leading to globally altered chromatin architecture and increased transcription of genes encoding enzymes of tricarboxylic acid (TCA) cycle and the ETC. The aim of this study was to determine whether DRC activates ETC. We show here that DRC activates ETC by a checkpoint kinase Dun1p-dependent mechanism. DRC induces transcription of RNR1-4 genes and elevates mtDNA copy number. Inactivation of RRM3 or SGS1, two DNA helicases important for DNA replication, activates DRC but does not render cells dependent on ETC. However, fitness of rrm3Δ and sgs1Δ cells requires Dun1p. The slow growth of rrm3Δdun1Δ and sgs1Δdun1Δ cells can be suppressed by introducing sml1Δ mutation, indicating that the slow growth is due to low levels of dNTPs. Interestingly, inactivation of ETC in dun1Δ cells results in a synthetic growth defect that can be suppressed by sml1Δ mutation, suggesting that ETC is important for dNTP synthesis in the absence of Dun1p function. Together, our results reveal an unexpected connection between ETC, replication stress, and Dun1p kinase.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Roshini T Liliah
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
15
|
Kukhtevich IV, Rivero-Romano M, Rakesh N, Bheda P, Chadha Y, Rosales-Becerra P, Hamperl S, Bureik D, Dornauer S, Dargemont C, Kirmizis A, Schmoller KM, Schneider R. Quantitative RNA imaging in single live cells reveals age-dependent asymmetric inheritance. Cell Rep 2022; 41:111656. [DOI: 10.1016/j.celrep.2022.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
|
16
|
Padovani F, Mairhörmann B, Falter-Braun P, Lengefeld J, Schmoller KM. Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC. BMC Biol 2022; 20:174. [PMID: 35932043 PMCID: PMC9356409 DOI: 10.1186/s12915-022-01372-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. RESULTS We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. CONCLUSIONS Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC.
Collapse
Affiliation(s)
- Francesco Padovani
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, 85764, Munich-Neuherberg, Germany.
| | - Benedikt Mairhörmann
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, 85764, Munich-Neuherberg, Germany
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, 85764, Munich-Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, 85764, Munich-Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University (LMU) München, 82152, Planegg-, Martinsried, Germany
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Biocenter 2, P.O.Box 56 (Viikinkaari 5 D), 00014, Helsinki, Finland
- Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Huddinge, Sweden
| | - Kurt M Schmoller
- Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, 85764, Munich-Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764, Munich-Neuherberg, Germany.
| |
Collapse
|
17
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
18
|
Nikolov VN, Malavia D, Kubota T. SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes. Nat Commun 2022; 13:1968. [PMID: 35413952 PMCID: PMC9005695 DOI: 10.1038/s41467-022-29591-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
The Pleiotropic Drug Resistance (PDR) network is central to the drug response in fungi, and its overactivation is associated with drug resistance. However, gene regulation of the PDR network is not well understood. Here, we show that the histone chaperone Rtt106 and the chromatin remodeller SWI/SNF control expression of the PDR network genes and confer drug resistance. In Saccharomyces cerevisiae, Rtt106 specifically localises to PDR network gene promoters dependent on transcription factor Pdr3, but not Pdr1, and is essential for Pdr3-mediated basal expression of the PDR network genes, while SWI/SNF is essential for both basal and drug-induced expression. Also in the pathogenic fungus Candida glabrata, Rtt106 and SWI/SNF regulate drug-induced PDR gene expression. Consistently, loss of Rtt106 or SWI/SNF sensitises drug-resistant S. cerevisiae mutants and C. glabrata to antifungal drugs. Since they cooperatively drive PDR network gene expression, Rtt106 and SWI/SNF represent potential therapeutic targets to combat antifungal resistance.
Collapse
Affiliation(s)
- Vladislav N Nikolov
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dhara Malavia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
19
|
Measuring the buffering capacity of gene silencing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2021; 118:2111841118. [PMID: 34857629 PMCID: PMC8670432 DOI: 10.1073/pnas.2111841118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Gene silencing, once established, is stably maintained for several generations. Despite the high fidelity of the inheritance of the silent state, individual components of silenced chromatin are in constant flux. Models suggest that silent loci can tolerate fluctuations in Sir proteins and histone acetylation levels, but the level of tolerance is unknown. To understand the quantitative relationships between H4K16 acetylation, Sir proteins, and silencing, we developed assays to quantitatively alter a H4K16 acetylation mimic allele and Sir protein levels and measure the effects of these changes on silencing. Our data suggest that a two- to threefold change in levels of histone marks and specific Sir proteins affects the stability of the silent state of a large chromatin domain. Gene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. Transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux, giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown, and we developed methods to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state as well as to measure the levels of the enzymes and structural proteins necessary for silencing. We show that loss of silencing required 50 to 75% acetyl-mimic histones, though the precise levels were influenced by silencer strength and upstream activating sequence (UAS) enhancer/promoter strength. Measurements of repressor protein levels necessary for silencing showed that reducing SIR4 gene dosage two- to threefold significantly weakened silencing, though reducing the gene copy numbers for Sir2 or Sir3 to the same extent did not significantly affect silencing suggesting that Sir4 was a limiting component in gene silencing. Calculations suggest that a mere twofold reduction in the ability of acetyltransferases to acetylate nucleosomes across a large array of nucleosomes may be sufficient to generate a transcriptionally silent domain.
Collapse
|
20
|
Capturing hidden regulation based on noise change of gene expression level from single cell RNA-seq in yeast. Sci Rep 2021; 11:22547. [PMID: 34799619 PMCID: PMC8604932 DOI: 10.1038/s41598-021-01558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Recent progress in high throughput single cell RNA-seq (scRNA-seq) has activated the development of data-driven inferring methods of gene regulatory networks. Most network estimations assume that perturbations produce downstream effects. However, the effects of gene perturbations are sometimes compensated by a gene with redundant functionality (functional compensation). In order to avoid functional compensation, previous studies constructed double gene deletions, but its vast nature of gene combinations was not suitable for comprehensive network estimation. We hypothesized that functional compensation may emerge as a noise change without mean change (noise-only change) due to varying physical properties and strong compensation effects. Here, we show compensated interactions, which are not detected by mean change, are captured by noise-only change quantified from scRNA-seq. We investigated whether noise-only change genes caused by a single deletion of STP1 and STP2, which have strong functional compensation, are enriched in redundantly regulated genes. As a result, noise-only change genes are enriched in their redundantly regulated genes. Furthermore, novel downstream genes detected from noise change are enriched in "transport", which is related to known downstream genes. Herein, we suggest the noise difference comparison has the potential to be applied as a new strategy for network estimation that capture even compensated interaction.
Collapse
|
21
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Bhagwat M, Nagar S, Kaur P, Mehta R, Vancurova I, Vancura A. Replication stress inhibits synthesis of histone mRNAs in yeast by removing Spt10p and Spt21p from the histone promoters. J Biol Chem 2021; 297:101246. [PMID: 34582893 PMCID: PMC8551654 DOI: 10.1016/j.jbc.2021.101246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation–quantitative PCR, we show here that histone mRNAs can be degraded by both 5′ → 3′ and 3′ → 5′ pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene–specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.
Collapse
Affiliation(s)
- Madhura Bhagwat
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
23
|
Claude KL, Bureik D, Chatzitheodoridou D, Adarska P, Singh A, Schmoller KM. Transcription coordinates histone amounts and genome content. Nat Commun 2021; 12:4202. [PMID: 34244507 PMCID: PMC8270936 DOI: 10.1038/s41467-021-24451-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Biochemical reactions typically depend on the concentrations of the molecules involved, and cell survival therefore critically depends on the concentration of proteins. To maintain constant protein concentrations during cell growth, global mRNA and protein synthesis rates are tightly linked to cell volume. While such regulation is appropriate for most proteins, certain cellular structures do not scale with cell volume. The most striking example of this is the genomic DNA, which doubles during the cell cycle and increases with ploidy, but is independent of cell volume. Here, we show that the amount of histone proteins is coupled to the DNA content, even though mRNA and protein synthesis globally increase with cell volume. As a consequence, and in contrast to the global trend, histone concentrations decrease with cell volume but increase with ploidy. We find that this distinct coordination of histone homeostasis and genome content is already achieved at the transcript level, and is an intrinsic property of histone promoters that does not require direct feedback mechanisms. Mathematical modeling and histone promoter truncations reveal a simple and generalizable mechanism to control the cell volume- and ploidy-dependence of a given gene through the balance of the initiation and elongation rates.
Collapse
Affiliation(s)
- Kora-Lee Claude
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Petia Adarska
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Abhyudai Singh
- Department of Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
24
|
Bhagwat M, Nagar S, Kaur P, Jassar S, Vancurova I, Vancura A. Synthesis of nucleocytosolic acetyl-CoA regulates mitochondrial respiration and ATP synthesis in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119025. [PMID: 33862055 DOI: 10.1016/j.bbamcr.2021.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Madhura Bhagwat
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Salony Jassar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
25
|
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, Petter M, Duffy MF. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin 2020; 13:50. [PMID: 33225957 PMCID: PMC7682024 DOI: 10.1186/s13072-020-00365-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Results Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. Conclusions The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.,Bio21 Institute, Parkville, VIC, 3052, Australia
| | - Lee M Yeoh
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.,Monash University, Melbourne, VIC, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karen P Day
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Michaela Petter
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,Erlangen University, 91054, Erlangen, Germany
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Bio21 Institute, Parkville, VIC, 3052, Australia. .,Peter Doherty Institute, Melbourne, VIC, 3000, Australia. .,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
26
|
Kassem S, Ferrari P, Hughes AL, Soudet J, Rando OJ, Strubin M. Histone exchange is associated with activator function at transcribed promoters and with repression at histone loci. SCIENCE ADVANCES 2020; 6:6/36/eabb0333. [PMID: 32917590 PMCID: PMC7467701 DOI: 10.1126/sciadv.abb0333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/15/2020] [Indexed: 05/14/2023]
Abstract
Transcription in eukaryotes correlates with major chromatin changes, including the replacement of old nucleosomal histones by new histones at the promoters of genes. The role of these histone exchange events in transcription remains unclear. In particular, the causal relationship between histone exchange and activator binding, preinitiation complex (PIC) assembly, and/or subsequent transcription remains unclear. Here, we provide evidence that histone exchange at gene promoters is not simply a consequence of PIC assembly or transcription but instead is mediated by activators. We further show that not all activators up-regulate gene expression by inducing histone turnover. Thus, histone exchange does not simply correlate with transcriptional activity, but instead reflects the mode of action of the activator. Last, we show that histone turnover is not only associated with activator function but also plays a role in transcriptional repression at the histone loci.
Collapse
Affiliation(s)
- Sari Kassem
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland
| | - Paolo Ferrari
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland
| | - Amanda L Hughes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julien Soudet
- Department of Cell Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michel Strubin
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland.
| |
Collapse
|
27
|
Detecting protein and post-translational modifications in single cells with iDentification and qUantification sEparaTion (DUET). Commun Biol 2020; 3:420. [PMID: 32747637 PMCID: PMC7400673 DOI: 10.1038/s42003-020-01132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022] Open
Abstract
While technologies for measuring transcriptomes in single cells have matured, methods for measuring proteins and their post-translational modification (PTM) states in single cells are still being actively developed. Unlike nucleic acids, proteins cannot be amplified, making detection of minute quantities from single cells difficult. Here, we develop a strategy to detect targeted protein and its PTM isoforms in single cells. We barcode the proteins from single cells by tagging them with oligonucleotides, pool barcoded cells together, run bulk gel electrophoresis to separate protein and its PTM isoform and quantify their abundances by sequencing the oligonucleotides associated with each protein species. We used this strategy, iDentification and qUantification sEparaTion (DUET), to measure histone protein H2B and its monoubiquitination isoform, H2Bub, in single yeast cells. Our results revealed the heterogeneities of H2B ubiquitination levels in single cells from different cell-cycle stages, which is obscured in ensemble measurements.
Collapse
|
28
|
Kim S, Park J, Kim T, Lee JS. The functional study of human proteins using humanized yeast. J Microbiol 2020; 58:343-349. [PMID: 32342338 DOI: 10.1007/s12275-020-0136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
The functional and optimal expression of genes is crucial for survival of all living organisms. Numerous experiments and efforts have been performed to reveal the mechanisms required for the functional and optimal expression of human genes. The yeast Saccharomyces cerevisiae has evolved independently of humans for billions of years. Nevertheless, S. cerevisiae has many conserved genes and expression mechanisms that are similar to those in humans. Yeast is the most commonly used model organism for studying the function and expression mechanisms of human genes because it has a relatively simple genome structure, which is easy to manipulate. Many previous studies have focused on understanding the functions and mechanisms of human proteins using orthologous genes and biological systems of yeast. In this review, we mainly introduce two recent studies that replaced human genes and nucleosomes with those of yeast. Here, we suggest that, although yeast is a relatively small eukaryotic cell, its humanization is useful for the direct study of human proteins. In addition, yeast can be used as a model organism in a broader range of studies, including drug screening.
Collapse
Affiliation(s)
- Seho Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Juhee Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan, 26241, Republic of Korea.
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
29
|
Kumar K, Moirangthem R, Kaur R. Histone H4 dosage modulates DNA damage response in the pathogenic yeast Candida glabrata via homologous recombination pathway. PLoS Genet 2020; 16:e1008620. [PMID: 32134928 PMCID: PMC7058290 DOI: 10.1371/journal.pgen.1008620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/22/2020] [Indexed: 12/05/2022] Open
Abstract
Candida glabrata, a nosocomial fungal bloodstream pathogen, causes significant morbidity and mortality in hospitals worldwide. The ability to replicate in macrophages and survive a high level of oxidative stress contributes to its virulence in the mammalian host. However, the role of DNA repair and recombination mechanisms in its pathobiology is still being discovered. Here, we have characterized the response of C. glabrata to the methyl methanesulfonate (MMS)-induced DNA damage. We found that the MMS exposure triggered a significant downregulation of histone H4 transcript and protein levels, and that, the damaged DNA was repaired by the homologous recombination (HR) pathway. Consistently, the reduced H4 gene dosage was associated with increased HR frequency and elevated resistance to MMS. The genetic analysis found CgRad52, a DNA strand exchange-promoter protein of the HR system, to be essential for this MMS resistance. Further, the tandem-affinity purification and mass spectrometry analysis revealed a substantially smaller interactome of H4 in MMS-treated cells. Among 23 identified proteins, we found the WD40-repeat protein CgCmr1 to interact genetically and physically with H4, and regulate H4 levels, HR pathway and MMS stress survival. Controlling H4 levels tightly is therefore a regulatory mechanism to survive MMS stress in C. glabrata. The cellular hereditary material DNA is present in a compact ordered form in eukaryotic cells which involves its winding around an octamer of four basic histone proteins, H2A, H2B, H3 and H4. DNA-protein (including histones) complexes form chromatin, with the chromatin structure, open or closed, modulating gene expression. Any change in histone levels impacts chromatin architecture and functions. Here, we have studied the effect of diminished histone H4 levels on viability, DNA damage response and virulence of the pathogenic yeast Candida glabrata. C. glabrata, a constituent of the normal microflora of healthy humans, causes both superficial and invasive infections in immunocompromised individuals. Despite it being the second most common cause of Candida bloodstream infections in USA after C. albicans, its pathogenesis determinants are yet to deciphered in full. We report that the reduced histone H4 gene dosage in C. glabrata results in elevated resistance to the DNA alkylating agent, methyl methanesulfonate, increased homologous recombination (HR) and attenuated virulence. We also show that the H4 interacting protein CgCmr1 regulates HR probably through maintaining H4 levels. Overall, our data underscore the H4 protein abundance as a cue to express virulence factors and regulate DNA metabolism in pathogenic fungi.
Collapse
Affiliation(s)
- Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Romila Moirangthem
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
30
|
Jackson CA, Castro DM, Saldi GA, Bonneau R, Gresham D. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments. eLife 2020; 9:e51254. [PMID: 31985403 PMCID: PMC7004572 DOI: 10.7554/elife.51254] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.
Collapse
Affiliation(s)
- Christopher A Jackson
- Center For Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
| | | | | | - Richard Bonneau
- Center For Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
- Courant Institute of Mathematical Sciences, Computer Science DepartmentNew York UniversityNew YorkUnited States
- Center For Data ScienceNew York UniversityNew YorkUnited States
- Flatiron Institute, Center for Computational BiologySimons FoundationNew YorkUnited States
| | - David Gresham
- Center For Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
| |
Collapse
|
31
|
Yu R, McCauley B, Dang W. Loss of chromatin structural integrity is a source of stress during aging. Hum Genet 2020; 139:371-380. [PMID: 31900586 DOI: 10.1007/s00439-019-02100-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Dysfunction and dysregulation at multiple levels, from organismal to molecular, are associated with the biological process of aging. In a eukaryotic nucleus, multiple lines of evidence have shown that the fundamental structure of chromatin is affected by aging. Not only euchromatic and heterochromatic regions shift locations, global changes, such as reduced levels of histones, have been reported for certain aged cell types and tissues. The physiological effects caused by such broad chromatin changes are complex and the cell's responses to it can be profound and in turn influence the aging process. In this review, we summarize recent findings on the interplay between chromatin architecture and aging with an emphasis on the cellular response to chromatin stress and its antagonistic effects on aging.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, USA
| | - Brenna McCauley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, USA.
| |
Collapse
|
32
|
Rendsvig JKH, Workman CT, Hoof JB. Bidirectional histone-gene promoters in Aspergillus: characterization and application for multi-gene expression. Fungal Biol Biotechnol 2019; 6:24. [PMID: 31867115 PMCID: PMC6900853 DOI: 10.1186/s40694-019-0088-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/23/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Filamentous fungi are important producers of enzymes and bioactive secondary metabolites and are exploited for industrial purposes. Expression and characterization of biosynthetic pathways requires stable expression of multiple genes in the production host. Fungal promoters are indispensable for the accomplishment of this task, and libraries of promoters that show functionality across diverse fungal species facilitate synthetic biology approaches, pathway expression, and cell-factory construction. RESULTS In this study, we characterized the intergenic region between the genes encoding histones H4.1 and H3, from five phylogenetically diverse species of Aspergillus, as bidirectional promoters (Ph4h3). By expression of the genes encoding fluorescent proteins mRFP1 and mCitrine, we show at the translational and transcriptional level that this region from diverse species is applicable as strong and constitutive bidirectional promoters in Aspergillus nidulans. Bioinformatic analysis showed that the divergent gene orientation of h4.1 and h3 appears maintained among fungi, and that the Ph4h3 display conserved DNA motifs among the investigated 85 Aspergilli. Two of the heterologous Ph4h3s were utilized for single-locus expression of four genes from the putative malformin producing pathway from Aspergillus brasiliensis in A. nidulans. Strikingly, heterologous expression of mlfA encoding the non-ribosomal peptide synthetase is sufficient for biosynthesis of malformins in A. nidulans, which indicates an iterative use of one adenylation domain in the enzyme. However, this resulted in highly stressed colonies, which was reverted to a healthy phenotype by co-expressing the residual four genes from the putative biosynthetic gene cluster. CONCLUSIONS Our study has documented that Ph4h3 is a strong constitutive bidirectional promoter and a valuable new addition to the genetic toolbox of at least the genus Aspergillus.
Collapse
Affiliation(s)
- Jakob K. H. Rendsvig
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob B. Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Schikora-Tamarit MÀ, Lopez-Grado I Salinas G, Gonzalez-Navasa C, Calderón I, Marcos-Fa X, Sas M, Carey LB. Promoter Activity Buffering Reduces the Fitness Cost of Misregulation. Cell Rep 2019; 24:755-765. [PMID: 30021171 DOI: 10.1016/j.celrep.2018.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/04/2018] [Accepted: 06/14/2018] [Indexed: 01/21/2023] Open
Abstract
Organisms regulate gene expression through changes in the activity of transcription factors (TFs). In yeast, the response of genes to changes in TF activity is generally assumed to be encoded in the promoter. To directly test this assumption, we chose 42 genes and, for each, replaced the promoter with a synthetic inducible promoter and measured how protein expression changes as a function of TF activity. Most genes exhibited gene-specific TF dose-response curves not due to differences in mRNA stability, translation, or protein stability. Instead, most genes have an intrinsic ability to buffer the effects of promoter activity. This can be encoded in the open reading frame and the 3' end of genes and can be implemented by both autoregulatory feedback and by titration of limiting trans regulators. We show experimentally and computationally that, when misexpression of a gene is deleterious, this buffering insulates cells from fitness defects due to misregulation.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guillem Lopez-Grado I Salinas
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Carolina Gonzalez-Navasa
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Irene Calderón
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Xavi Marcos-Fa
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Miquel Sas
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Lucas B Carey
- Systems Bioengineering Program, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
34
|
Crane MM, Russell AE, Schafer BJ, Blue BW, Whalen R, Almazan J, Hong MG, Nguyen B, Goings JE, Chen KL, Kelly R, Kaeberlein M. DNA damage checkpoint activation impairs chromatin homeostasis and promotes mitotic catastrophe during aging. eLife 2019; 8:e50778. [PMID: 31714209 PMCID: PMC6850777 DOI: 10.7554/elife.50778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
Genome instability is a hallmark of aging and contributes to age-related disorders such as cancer and Alzheimer's disease. The accumulation of DNA damage during aging has been linked to altered cell cycle dynamics and the failure of cell cycle checkpoints. Here, we use single cell imaging to study the consequences of increased genomic instability during aging in budding yeast and identify striking age-associated genome missegregation events. This breakdown in mitotic fidelity results from the age-related activation of the DNA damage checkpoint and the resulting degradation of histone proteins. Disrupting the ability of cells to degrade histones in response to DNA damage increases replicative lifespan and reduces genomic missegregations. We present several lines of evidence supporting a model of antagonistic pleiotropy in the DNA damage response where histone degradation, and limited histone transcription are beneficial to respond rapidly to damage but reduce lifespan and genomic stability in the long term.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Adam E Russell
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Brent J Schafer
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Ben W Blue
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Riley Whalen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Jared Almazan
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Mung Gi Hong
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Bao Nguyen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Joslyn E Goings
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Kenneth L Chen
- Department of PathologyUniversity of WashingtonSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Medical Scientist Training ProgramUniversity of WashingtonSeattleUnited States
| | - Ryan Kelly
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of PathologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
35
|
Li S, Almeida AR, Radebaugh CA, Zhang L, Chen X, Huang L, Thurston AK, Kalashnikova AA, Hansen JC, Luger K, Stargell LA. The elongation factor Spn1 is a multi-functional chromatin binding protein. Nucleic Acids Res 2019; 46:2321-2334. [PMID: 29300974 PMCID: PMC5861400 DOI: 10.1093/nar/gkx1305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1–410) binds DNA, histones H3–H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141–305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.
Collapse
Affiliation(s)
- Sha Li
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Adam R Almeida
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Liangqun Huang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Alison K Thurston
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA.,Howard Hughes Medical Institute
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
36
|
Bu P, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem 2019; 294:9771-9786. [PMID: 31073026 DOI: 10.1074/jbc.ra118.007266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Biological Sciences and
| | | | | | | | - Ankita Shah
- Pharmaceutical Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Departments of Biological Sciences and
| | | | | |
Collapse
|
37
|
Histone stress: an unexplored source of chromosomal instability in cancer? Curr Genet 2019; 65:1081-1088. [DOI: 10.1007/s00294-019-00967-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023]
|
38
|
Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 2019; 65:799-816. [DOI: 10.1007/s00294-019-00935-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
|
39
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
40
|
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 2018; 9:3589. [PMID: 30181586 DOI: 10.1038/s41467-018-0591-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023] Open
Abstract
Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature's use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, β-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Thomas Kickenweiz
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Julia Pitzer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | - Lukas Sturmberger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | - Astrid Weninger
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Bradley W Biggs
- Manus Biosynthesis, 1030 Massachusetts Avenue, Suite 300, Cambridge, MA, 02138, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eva-Maria Köhler
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Armin Baumschlager
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Jasmin Elgin Fischer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Patrick Hyden
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Marlies Wagner
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | | | - Anton Glieder
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
41
|
Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 2018; 9:3589. [PMID: 30181586 PMCID: PMC6123417 DOI: 10.1038/s41467-018-05915-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023] Open
Abstract
Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature’s use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, β-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications. Classic monodirectional promoters are of limited use for multiple gene co-expression. Here the authors generate a library of 168 bidirectional promoters for the yeast K. phaffii (syn. P. pastoris) with diverse expression profiles to optimize metabolic pathway design.
Collapse
|
42
|
Systematic Identification, Characterization, and Conservation of Adjacent-Gene Coregulation in the Budding Yeast Saccharomyces cerevisiae. mSphere 2018; 3:3/3/e00220-18. [PMID: 29898982 PMCID: PMC6001612 DOI: 10.1128/msphere.00220-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
The spatial positioning of genes throughout the genome arrangement can alter their expression in many eukaryotic organisms. Often this results in a genomic context-specific effect on transcription. One example of this is through the clustering of functionally related genes, which results in adjacent-gene coregulation in the budding yeast Saccharomyces cerevisiae. In the present study, we set out to systematically characterize the prevalence of this phenomenon, finding the genomic organization of functionally related genes into clusters is a characteristic of myriad gene families. These arrangements are found in many evolutionarily divergent fungi and thus represent a widespread, yet underappreciated, layer of transcriptional regulation. It is essential that cells orchestrate gene expression for the specific niche that they occupy, and this often requires coordination of the expression of large sets of genes. There are multiple regulatory systems that exist for modulation of gene expression, including the adjacent-gene coregulation of the rRNA and ribosome biogenesis and ribosomal protein families. Both gene families exhibit a nonrandom genomic distribution, often clustered directly adjacent to another member of the same family, which results in a tighter transcriptional coordination among adjacent paired genes than that of the unpaired genes within each regulon and can result in a shared promoter that coordinates expression of the pairs. This nonrandom genomic distribution has been seen in a few functionally related gene families, and many of these functional pairings are conserved across divergent fungal lineages. To date, the significance of these observations has not been extended in a systematic way to characterize how prevalent the role of adjacent-gene coregulation is in transcriptional regulation. In the present study, we systematically analyzed the transcriptional coherence of the functional pairs compared to the singletons within all gene families defined by the Gene Ontology Slim designation, using Saccharomyces cerevisiae as a model system, finding that clusters exhibit a tighter transcriptional correlation under specific contexts. We found that the longer a functional pairing is conserved the tighter its response to broad stress and nutritional responses, that roughly 25% of gene families exhibit a nonrandom genomic distribution, and that many of these clusters are conserved. This suggests that adjacent-gene coregulation is a widespread, yet underappreciated, transcriptional mechanism. IMPORTANCE The spatial positioning of genes throughout the genome arrangement can alter their expression in many eukaryotic organisms. Often this results in a genomic context-specific effect on transcription. One example of this is through the clustering of functionally related genes, which results in adjacent-gene coregulation in the budding yeast Saccharomyces cerevisiae. In the present study, we set out to systematically characterize the prevalence of this phenomenon, finding the genomic organization of functionally related genes into clusters is a characteristic of myriad gene families. These arrangements are found in many evolutionarily divergent fungi and thus represent a widespread, yet underappreciated, layer of transcriptional regulation.
Collapse
|
43
|
Viral proteins as a potential driver of histone depletion in dinoflagellates. Nat Commun 2018; 9:1535. [PMID: 29670105 PMCID: PMC5906630 DOI: 10.1038/s41467-018-03993-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.
Collapse
|
44
|
Maya Miles D, Peñate X, Sanmartín Olmo T, Jourquin F, Muñoz Centeno MC, Mendoza M, Simon MN, Chavez S, Geli V. High levels of histones promote whole-genome-duplications and trigger a Swe1 WEE1-dependent phosphorylation of Cdc28 CDK1. eLife 2018; 7:35337. [PMID: 29580382 PMCID: PMC5871333 DOI: 10.7554/elife.35337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones.
Collapse
Affiliation(s)
- Douglas Maya Miles
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Trinidad Sanmartín Olmo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Frederic Jourquin
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Maria Cruz Muñoz Centeno
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Manuel Mendoza
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie-Noelle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Sebastian Chavez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Vincent Geli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| |
Collapse
|
45
|
Rao MJ, Srinivasan M, Rajasekharan R. Cell size is regulated by phospholipids and not by storage lipids in Saccharomyces cerevisiae. Curr Genet 2018. [PMID: 29536156 DOI: 10.1007/s00294-018-0821-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell size and morphology are key adaptive features that influence almost all aspects of cellular physiology such as cell cycle and lipid metabolism. Here we report the role of a transcription factor Suppressor Phenotype of Ty elements insertion 10 (SPT10) of Saccharomyces cerevisiae in regulating cell cycle, cell size and lipid metabolism in concert, in addition to its defined role of histone gene expression. Morphological and biochemical analyses of spt10Δ strain show an abnormal cell size, cell cycle and lipid levels. The expression of Spt10p in spt10Δ strain helps the cell revert to typical wild-type phenotypes. SPT10 controls lipid metabolism by negatively regulating the expression of lipid biosynthetic genes, and positively regulating the expression of the lipid hydrolyzing genes. Spt10p helps in maintaining the cell size by regulating the amount of carbon flux into the phospholipid constituents of the cell membranes. On the contrary, storage lipids have no role in regulating the cell size. An exogenous supply of phosphatidic acid increases the cell size, proving the positive impact of the phospholipids on cell size modulation. SPT10 affects cell cycle, cell size and lipid metabolism by an orchestrated transcriptional regulation of the corresponding genes.
Collapse
Affiliation(s)
- Monala Jayaprakash Rao
- Department of Lipid Science, Lipidomics Center, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Malathi Srinivasan
- Department of Lipid Science, Lipidomics Center, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Ram Rajasekharan
- Department of Lipid Science, Lipidomics Center, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India. .,Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
46
|
Abstract
Chromatin is organized into higher-order structures that form subcompartments in interphase nuclei. Different categories of specialized enzymes act on chromatin and regulate its compaction and biophysical characteristics in response to physiological conditions. We present an overview of the function of chromatin structure and its dynamic changes in response to genotoxic stress, focusing on both subnuclear organization and the physical mobility of DNA. We review the requirements and mechanisms that cause chromatin relocation, enhanced mobility, and chromatin unfolding as a consequence of genotoxic lesions. An intriguing link has been established recently between enhanced chromatin dynamics and histone loss.
Collapse
Affiliation(s)
- Michael H Hauer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
47
|
Choi JA, Wyrick JJ. RegulatorDB: a resource for the analysis of yeast transcriptional regulation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4061585. [PMID: 29220449 PMCID: PMC5737240 DOI: 10.1093/database/bax058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Database URL http://wyrickbioinfo2.smb.wsu.edu/RegulatorDB.
Collapse
Affiliation(s)
| | - John J Wyrick
- School of Molecular Biosciences.,Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
48
|
Jiang S, Liu Y, Wang A, Qin Y, Luo M, Wu Q, Boeke JD, Dai J. Construction of Comprehensive Dosage-Matching Core Histone Mutant Libraries for Saccharomyces cerevisiae. Genetics 2017; 207:1263-1273. [PMID: 29084817 PMCID: PMC5714446 DOI: 10.1534/genetics.117.300450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae contains two genes for each core histone, which are presented as pairs under the control of a divergent promoter, i.e., HHT1-HHF1, HHT2-HHF2, HTA1-HTB1 and HTA2-HTB2HHT1-HHF1, and HHT2-HHF2 encode histone H3 and H4 with identical amino acid sequences but under the control of differently regulated promoters. Previous mutagenesis studies were carried out by deleting one pair and mutating the other one. Here, we present the design and construction of three additional libraries covering HTA1-HTB1, HTA2-HTB2, and HHT1-HHF1 respectively. Together with the previously described library of HHT2-HHF2 mutants, a systematic and complete collection of mutants for each of the eight core S. cerevisiae histone genes becomes available. Each designed mutant was incorporated into the genome, generating three more corresponding libraries of yeast strains. We demonstrated that, although, under normal growth conditions, strains with single-copy integrated histone genes lacked phenotypes, in some growth conditions, growth deficiencies were observed. Specifically, we showed that addition of a second copy of the mutant histone gene could rescue the lethality in some previously known mutants that cannot survive with a single copy. This resource enables systematic studies of function of each nucleosome residue in plasmid, single-copy, and double-copy integrated formats.
Collapse
Affiliation(s)
- Shuangying Jiang
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Liu
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Ann Wang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York 10011
| | - Yiran Qin
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Maoguo Luo
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Qingyu Wu
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York 10011
| | - Junbiao Dai
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
49
|
Resetting the Yeast Epigenome with Human Nucleosomes. Cell 2017; 171:1508-1519.e13. [PMID: 29198523 DOI: 10.1016/j.cell.2017.10.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/11/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
Abstract
Humans and yeast are separated by a billion years of evolution, yet their conserved histones retain central roles in gene regulation. Here, we "reset" yeast to use core human nucleosomes in lieu of their own (a rare event taking 20 days), which initially only worked with variant H3.1. The cells adapt by acquiring suppressor mutations in cell-division genes or by acquiring certain aneuploid states. Converting five histone residues to their yeast counterparts restored robust growth. We reveal that humanized nucleosomes are positioned according to endogenous yeast DNA sequence and chromatin-remodeling network, as judged by a yeast-like nucleosome repeat length. However, human nucleosomes have higher DNA occupancy, globally reduce RNA content, and slow adaptation to new conditions by delaying chromatin remodeling. These humanized yeasts (including H3.3) pose fundamental new questions about how chromatin is linked to many cell processes and provide a platform to study histone variants via yeast epigenome reprogramming.
Collapse
|
50
|
Mei Q, Huang J, Chen W, Tang J, Xu C, Yu Q, Cheng Y, Ma L, Yu X, Li S. Regulation of DNA replication-coupled histone gene expression. Oncotarget 2017; 8:95005-95022. [PMID: 29212286 PMCID: PMC5706932 DOI: 10.18632/oncotarget.21887] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
The expression of core histone genes is cell cycle regulated. Large amounts of histones are required to restore duplicated chromatin during S phase when DNA replication occurs. Over-expression and excess accumulation of histones outside S phase are toxic to cells and therefore cells need to restrict histone expression to S phase. Misregulation of histone gene expression leads to defects in cell cycle progression, genome stability, DNA damage response and transcriptional regulation. Here, we discussed the factors involved in histone gene regulation as well as the underlying mechanism. Understanding the histone regulation mechanism will shed lights on elucidating the side effects of certain cancer chemotherapeutic drugs and developing potential biomarkers for tumor cells.
Collapse
Affiliation(s)
- Qianyun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Junhua Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ying Cheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|