1
|
Mahmoudian RA, Fathi F, Farshchian M, Abbaszadegan MR. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30. Mol Biotechnol 2023; 65:350-360. [PMID: 35474410 DOI: 10.1007/s12033-022-00490-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.
Collapse
Affiliation(s)
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR) Razavi Khorasan, ACECR Central Building, Ferdowsi University Campus, Mashhad- Azadi Square, Mashhad Branch, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ratner LD, La Motta GE, Briski O, Salamone DF, Fernandez-Martin R. Practical Approaches for Knock-Out Gene Editing in Pigs. Front Genet 2021; 11:617850. [PMID: 33747029 PMCID: PMC7973260 DOI: 10.3389/fgene.2020.617850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Pigs are an important resource for meat production and serve as a model for human diseases. Due to their physiological and anatomical similarities to humans, these animals can recapitulate symptoms of human diseases, becoming an effective model for biomedical research. Although, in the past pig have not been widely used partially because of the difficulty in genetic modification; nowadays, with the new revolutionary technology of programmable nucleases, and fundamentally of the CRISPR-Cas9 systems, it is possible for the first time to precisely modify the porcine genome as never before. To this purpose, it is necessary to introduce the system into early stage zygotes or to edit cells followed by somatic cell nuclear transfer. In this review, several strategies for pig knock-out gene editing, using the CRISPR-Cas9 system, will be summarized, as well as genotyping methods and different delivery techniques to introduce these tools into the embryos. Finally, the best approaches to produce homogeneous, biallelic edited animals will be discussed.
Collapse
Affiliation(s)
- Laura Daniela Ratner
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gaston Emilio La Motta
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Olinda Briski
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Fernandez-Martin
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Shen D, Song C, Miskey C, Chan S, Guan Z, Sang Y, Wang Y, Chen C, Wang X, Müller F, Ivics Z, Gao B. A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Res 2021; 49:2126-2140. [PMID: 33638993 PMCID: PMC7913693 DOI: 10.1093/nar/gkab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Shuheng Chan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
4
|
Chaudhari N, Rickard AM, Roy S, Dröge P, Makhija H. A non-viral genome editing platform for site-specific insertion of large transgenes. Stem Cell Res Ther 2020; 11:380. [PMID: 32883366 PMCID: PMC7650303 DOI: 10.1186/s13287-020-01890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The precise, functional and safe insertion of large DNA payloads into host genomes offers versatility in downstream genetic engineering-associated applications, spanning cell and gene therapies, therapeutic protein production, high-throughput cell-based drug screening and reporter cell lines amongst others. Employing viral- and non-viral-based genome engineering tools to achieve specific insertion of large DNA-despite being successful in E. coli and animal models-still pose challenges in the human system. In this study, we demonstrate the applicability of our lambda integrase-based genome insertion tool for human cell and gene therapy applications that require insertions of large functional genes, as exemplified by the integration of a functional copy of the F8 gene and a Double Homeobox Protein 4 (DUX4)-based reporter cassette for potential hemophilia A gene therapy and facioscapulohumeral muscular dystrophy (FSHD)-based high-throughput drug screening purposes, respectively. Thus, we present a non-viral genome insertion tool for safe and functional delivery of large seamless DNA cargo into the human genome that can enable novel designer cell-based therapies. METHODS Previously, we have demonstrated the utility of our phage λ-integrase platform to generate seamless vectors and subsequently achieve functional integration of large-sized DNA payloads at defined loci in the human genome. To further explore this tool for therapeutic applications, we used pluripotent human embryonic stem cells (hESCs) to integrate large seamless vectors comprising a 'gene of interest'. Clonal cell populations were screened for the correct integration events and further characterized by southern blotting, gene expression and protein activity assays. In the case of our hemophilia A-related study, clones were differentiated to confirm that the targeted locus is active after differentiation and actively express and secrete Factor VIII. RESULTS The two independent approaches demonstrated specific and functional insertions of a full-length blood clotting F8 expression cassette of ~ 10 kb and of a DUX4 reporter cassette of ~ 7 kb in hESCs. CONCLUSION We present a versatile tool for site-specific human genome engineering with large transgenes for cell/gene therapies and other synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Namrata Chaudhari
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore
| | - Amanda M Rickard
- Genea Biocells, 11099 North Torrey Pines Road, Suite 210, La Jolla, CA, 92037, USA
| | - Suki Roy
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore.
| | - Harshyaa Makhija
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
5
|
Abstract
Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of the human purinoceptors have been found in mouse, making this laboratory animal a useful model to study their function. Indeed, analyses of purinoceptors via knock-in or knockout approaches to produce gain or loss of function phenotypes have revealed several important therapeutic targets. None of the homozygous purinoceptor knockouts proved to be developmentally lethal, which suggest that either these receptors are not involved in key developmental processes or that the large number of receptors in each family allowed for functional compensation. Different models for the same purinoceptor often show compatible phenotypes but there have been examples of significant discrepancies. These revealed unexpected differences in the structure of human and mouse genes and emphasized the importance of the genetic background of different mouse strains. In this chapter, we provide an overview of the current knowledge and new trends in the modifications of purinoceptor genes in vivo. We discuss the resulting phenotypes, their applications and relative merits and limitations of mouse models available to study purinoceptor subtypes.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| |
Collapse
|
6
|
Dong Y, Huang Z, Kuang Q, Wen Z, Liu Z, Li Y, Yang Y, Li M. Expression dynamics and relations with nearby genes of rat transposable elements across 11 organs, 4 developmental stages and both sexes. BMC Genomics 2017; 18:666. [PMID: 28851270 PMCID: PMC5576108 DOI: 10.1186/s12864-017-4078-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TEs pervade mammalian genomes. However, compared with mice, fewer studies have focused on the TE expression patterns in rat, particularly the comparisons across different organs, developmental stages and sexes. In addition, TEs can influence the expression of nearby genes. The temporal and spatial influences of TEs remain unclear yet. RESULTS To evaluate the TEs transcription patterns, we profiled their transcript levels in 11 organs for both sexes across four developmental stages of rat. The results show that most short interspersed elements (SINEs) are commonly expressed in all conditions, which are also the major TE types with commonly expression patterns. In contrast, long terminal repeats (LTRs) are more likely to exhibit specific expression patterns. The expression tendency of TEs and genes are similar in most cases. For example, few specific genes and TEs are in the liver, muscle and heart. However, TEs perform superior over genes on classing organ, which imply their higher organ specificity than genes. By associating the TEs with the closest genes in genome, we find their expression levels are correlated, independent of their distance in some cases. CONCLUSIONS TEs sex-dependently associate with nearest genes. A gene would be associated with more than one TE. Our works can help to functionally annotate the genome and further understand the role of TEs in gene regulation.
Collapse
Affiliation(s)
- Yongcheng Dong
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Ziyan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhibin Liu
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yi Yang
- College of Life Science, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
7
|
Hamra FK, Richie CT, Harvey BK. Long Evans rat spermatogonial lines are effective germline vectors for transgenic rat production. Transgenic Res 2017; 26:477-489. [PMID: 28608322 DOI: 10.1007/s11248-017-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
Long Evans rat strains are applied as research models in a broad spectrum of biomedical fields (>15,800 citations, NCBI PubMed). Here, we report an approach to genetically modify the Long Evans rat germline in donor spermatogonial stem cells. Long Evans rat spermatogonial lines were derived from freshly isolated laminin-binding spermatogonia. Laminin-binding spermatogonia were cultured over multiple passages on fibroblast feeder layers in serum-free culture medium containing GDNF and FGF2. Long Evans rat spermatogonial lines were genetically modified by transposon transduction to express a germline, tdTomato reporter gene. Donor rat spermatogonial lines robustly regenerated spermatogenesis after transplantation into testes of busulfan-treated, allogenic, Long Evans rats. Donor-derived spermatogenesis largely restored testis size in the chemically sterilized, recipient Long Evans rats. Recipient Long Evans rats stably transmitted the tdTomato germline marker to subsequent generations. Overall, Long Evans rat spermatogonial lines provided effective donor germline vectors for genetically modifying Long Evans rats.
Collapse
Affiliation(s)
- F Kent Hamra
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. .,Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Christopher T Richie
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Brandon K Harvey
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| |
Collapse
|
8
|
Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 2017; 24:133-143. [DOI: 10.1038/gt.2017.5] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
|
9
|
Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-Based Therapeutics - Advances and Perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:709-22. [PMID: 27449617 DOI: 10.1134/s0006297916070075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review we discuss features of mRNA synthesis and modifications used to minimize immune response and prolong efficiency of the translation process in vivo. Considerable attention is given to the use of liposomes and nanoparticles containing lipids and polymers for the mRNA delivery. Finally we briefly discuss mRNAs which are currently in the clinical trials for cancer immunotherapy, vaccination against infectious diseases, and replacement therapy.
Collapse
Affiliation(s)
- O V Sergeeva
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
10
|
Jung CJ, Ménoret S, Brusselle L, Tesson L, Usal C, Chenouard V, Remy S, Ouisse LH, Poirier N, Vanhove B, de Jong PJ, Anegon I. Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats. Sci Rep 2016; 6:31455. [PMID: 27530248 PMCID: PMC4987655 DOI: 10.1038/srep31455] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023] Open
Abstract
BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Chris J Jung
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Séverine Ménoret
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Lucas Brusselle
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laurent Tesson
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Claire Usal
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Vanessa Chenouard
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Séverine Remy
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laure-Hélène Ouisse
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Nicolas Poirier
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Bernard Vanhove
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Pieter J de Jong
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Ignacio Anegon
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| |
Collapse
|
11
|
Wang CY, Tang MC, Chang WC, Furushima K, Jang CW, Behringer RR, Chen CM. PiggyBac Transposon-Mediated Mutagenesis in Rats Reveals a Crucial Role of Bbx in Growth and Male Fertility. Biol Reprod 2016; 95:51. [PMID: 27465138 PMCID: PMC5394979 DOI: 10.1095/biolreprod.116.141739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Bobby sox homolog (Bbx) is an evolutionally conserved gene, but its biological function remains elusive. Here, we characterized defects of Bbx mutant rats that were created by PiggyBac-mediated insertional mutagenesis. Smaller body size and male infertility were the two major phenotypes of homozygous Bbx mutants. Bbx expression profile analysis showed that Bbx was more highly expressed in the testis and pituitary gland than in other organs. Histology and hormonal gene expression analysis of control and Bbx-null pituitary glands showed that loss of Bbx appeared to be dispensable for pituitary histogenesis and the expression of major hormones. BBX was localized in the nuclei of postmeiotic spermatids and Sertoli cells in wild-type testes, but absent in mutant testes. An increased presence of aberrant multinuclear giant cells and apoptotic cells was observed in mutant seminiferous tubules. TUNEL-positive cells costained with CREM (round spermatid marker), but not PLZF (spermatogonia marker), gammaH2Ax (meiotic spermatocyte marker), or GATA4 (Sertoli cell marker). Finally, there were drastically reduced numbers and motility of epididymal sperm from Bbx-null rats. These results suggest that loss of BBX induces apoptosis of postmeiotic spermatids and results in spermiogenesis defects and infertility.
Collapse
Affiliation(s)
- Chieh-Ying Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chu Tang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan Laboratory Animal Center, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Chi Chang
- Laboratory Animal Center, National Yang-Ming University, Taipei, Taiwan
| | - Kenryo Furushima
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Chuan-Wei Jang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan Laboratory Animal Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
DeNicola GM, Karreth FA, Adams DJ, Wong CC. The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biol 2015; 16:229. [PMID: 26481584 PMCID: PMC4612416 DOI: 10.1186/s13059-015-0794-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of transposons as insertional mutagens to identify cancer genes in mice has generated a wealth of information over the past decade. Here, we discuss recent major advances in transposon-mediated insertional mutagenesis screens and compare this technology with other screening strategies.
Collapse
Affiliation(s)
- Gina M DeNicola
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Florian A Karreth
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, UK
| | - Chi C Wong
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, UK. .,Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
13
|
Xu HL, Shen XD, Hou F, Cheng LD, Zou SM, Jiang XY. Prokaryotic expression and purification of soluble goldfish Tgf2 transposase with transposition activity. Mol Biotechnol 2015; 57:94-100. [PMID: 25370823 DOI: 10.1007/s12033-014-9805-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Goldfish Tgf2 transposon of Hobo/Activator/Tam3 (hAT) family can mediate gene insertion in a variety of aquacultural fish species by transposition; however, the protein structure of Tgf2 transposase (TPase) is still poorly understood. To express the goldfish Tgf2 TPase in Escherichia coli, the 2061-bp coding region was cloned into pET-28a(+) expression vector containing an N-terminal (His)6-tag. The pET-28a(+)-Tgf2 TPase expression cassette was transformed into Rosetta 1 (DE3) E. coli lines. A high yield of soluble proteins with molecular weight of ~80 kDa was obtained by optimized cultures including low-temperature (22 °C) incubation and early log phase (OD600 = 0.3-0.4) induction. Mass spectrometry analysis following trypsin digestion of the recombinant proteins confirmed a Tgf2 TPase component in the eluate of Ni(2+)-affinity chromatography. When co-injected into 1-2 cell embryos with a donor plasmid harboring a Tgf2 cis-element, the prokaryotic expressed Tgf2 TPase can mediate high rates (45 %) of transposition in blunt snout bream (Megalobrama amblycephala). Transposition was proved by the presence of 8-bp random direct repeats at the target sites, which is the signature of hAT family transposons. Production of the Tgf2 Tpase protein in a soluble and active form not only allows further investigation of its structure, but provides an alternative tool for fish transgenesis and insertional mutagenesis.
Collapse
Affiliation(s)
- Hai-Li Xu
- College of Food Science and Technology, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | | | | | | | | | | |
Collapse
|
14
|
Tang L, González R, Dobrinski I. Germline modification of domestic animals. Anim Reprod 2015; 12:93-104. [PMID: 27390591 PMCID: PMC4933526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs.
Collapse
Affiliation(s)
| | | | - I. Dobrinski
- Corresponding author: , Phone: +1(403)210-6523; Fax: +1(403)210-7882
| |
Collapse
|
15
|
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80. [PMID: 25233993 DOI: 10.1038/nrd4278] [Citation(s) in RCA: 1522] [Impact Index Per Article: 138.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
Collapse
Affiliation(s)
- Ugur Sahin
- 1] TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany. [2] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Katalin Karikó
- 1] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany. [2] Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Özlem Türeci
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
16
|
Zhao L, Ng ET, Koopman P. ApiggyBactransposon- and gateway-enhanced system for efficient BAC transgenesis. Dev Dyn 2014; 243:1086-94. [DOI: 10.1002/dvdy.24153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 11/07/2022] Open
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Ee Ting Ng
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Peter Koopman
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
17
|
Hong JB, Chou FJ, Ku AT, Fan HH, Lee TL, Huang YH, Yang TL, Su IC, Yu IS, Lin SW, Chien CL, Ho HN, Chen YT. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS One 2014; 9:e89396. [PMID: 24586748 PMCID: PMC3933532 DOI: 10.1371/journal.pone.0089396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/20/2014] [Indexed: 11/25/2022] Open
Abstract
PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3–4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.
Collapse
Affiliation(s)
- Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Fu-Ju Chou
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Amy T. Ku
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Hsuan Fan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tung-Lung Lee
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-Hsin Huang
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chang Su
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Shing Yu
- Transgenic Mouse Model Core Facility of the National Research Program for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Stem Cell Core Laboratory, National Taiwan University Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Nerng Ho
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Stem Cell Core Laboratory, National Taiwan University Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Stem Cell Core Laboratory, National Taiwan University Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Ding S, Xu T, Wu X. Generation of genetically engineered mice by the piggyBac transposon system. Methods Mol Biol 2014; 1194:171-85. [PMID: 25064103 DOI: 10.1007/978-1-4939-1215-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetically engineered mice (GEM) are invaluable tools not only for understanding mammalian biology but also for modeling human diseases. Here we present protocols to generate GEM with the piggyBac (PB) transposon system. In the first part, we describe a transgenic procedure that co-injects the transgene carried by a PB donor plasmid and a PB transposase (PBase)-expressing helper plasmid into the pronuclei of fertilized eggs. In the second part, we provide a large-scale, cost-effective insertional mutagenesis strategy that remobilizes single-copy PB transposons in the male germ line. Given that PB can transpose in a broad spectrum of eukaryotic hosts, the protocols described here could be adapted for other species in the future.
Collapse
Affiliation(s)
- Sheng Ding
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Biomedical Research Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | |
Collapse
|
19
|
Bire S, Ley D, Casteret S, Mermod N, Bigot Y, Rouleux-Bonnin F. Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One 2013; 8:e82559. [PMID: 24312663 PMCID: PMC3849487 DOI: 10.1371/journal.pone.0082559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2013] [Indexed: 12/23/2022] Open
Abstract
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 7292, Université François Rabelais, Tours, France
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | - Déborah Ley
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Sophie Casteret
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | - Nicolas Mermod
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Yves Bigot
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | | |
Collapse
|
20
|
Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol 2013; 13:75. [PMID: 24070093 PMCID: PMC3849706 DOI: 10.1186/1472-6750-13-75] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022] Open
Abstract
Background Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. Results The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. Conclusion Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
Collapse
|