1
|
Herrmann JA, Koprowska A, Winters TJ, Villanueva N, Nikityuk VD, Pek F, Reis EM, Dominguez CZ, Davis D, McPherson E, Rocco SR, Recendez C, Difuntorum SM, Faeth K, Lopez MD, Awwad HM, Ghobashy RA, Cappiello L, Neidle EL, Quiñones-Soto S, Reams AB. Gene amplification mutations originate prior to selective stress in Acinetobacter baylyi. G3 (BETHESDA, MD.) 2023; 13:jkac327. [PMID: 36504387 PMCID: PMC9997567 DOI: 10.1093/g3journal/jkac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The controversial theory of adaptive amplification states gene amplification mutations are induced by selective environments where they are enriched due to the stress caused by growth restriction on unadapted cells. We tested this theory with three independent assays using an Acinetobacter baylyi model system that exclusively selects for cat gene amplification mutants. Our results demonstrate all cat gene amplification mutant colonies arise through a multistep process. While the late steps occur during selection exposure, these mutants derive from low-level amplification mutant cells that form before growth-inhibiting selection is imposed. During selection, these partial mutants undergo multiple secondary steps generating higher amplification over several days to multiple weeks to eventually form visible high-copy amplification colonies. Based on these findings, amplification in this Acinetobacter system can be explained by a natural selection process that does not require a stress response. These findings have fundamental implications to understanding the role of growth-limiting selective environments on cancer development. We suggest duplication mutations encompassing growth factor genes may serve as new genomic biomarkers to facilitate early cancer detection and treatment, before high-copy amplification is attained.
Collapse
Affiliation(s)
- Jennifer A Herrmann
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Agata Koprowska
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Tesa J Winters
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Nancy Villanueva
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Victoria D Nikityuk
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Feini Pek
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Elizabeth M Reis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Constancia Z Dominguez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Daniel Davis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Eric McPherson
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Staci R Rocco
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Cynthia Recendez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Shyla M Difuntorum
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Kelly Faeth
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Mario D Lopez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Habeeba M Awwad
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Rola A Ghobashy
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Lauren Cappiello
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Semarhy Quiñones-Soto
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| |
Collapse
|
2
|
Yosef I, Edgar R, Levy A, Amitai G, Sorek R, Munitz A, Qimron U. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model. Nat Microbiol 2016; 1:16047. [DOI: 10.1038/nmicrobiol.2016.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/11/2016] [Indexed: 11/09/2022]
|
3
|
A source of artifact in the lacZ reversion assay in Escherichia coli. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 784-785:23-30. [PMID: 26046973 DOI: 10.1016/j.mrgentox.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 11/20/2022]
Abstract
The lacZ reversion assay in Escherichia coli measures point mutations that occur by specific base substitutions and frameshift mutations. The tester strains cannot use lactose as a carbon source (Lac(-)), and revertants are easily detected by growth on lactose medium (Lac(+)). Six strains identify the six possible base substitutions, and five strains measure +G, -G, -CG, +A and -A frameshifts. Strong mutagens give dose-dependent increases in numbers of revertants per plate and revertant frequencies. Testing compounds that are arguably nonmutagens or weakly mutagenic, we often noted statistically significant dose-dependent increases in revertant frequency that were not accompanied by an absolute increase in numbers of revertants. The increase in frequency was wholly ascribable to a declining number of viable cells owing to toxicity. Analysis of the conditions revealed that the frequency of spontaneous revertants is higher when there are fewer viable cells per plate. The phenomenon resembles "adaptive" or "stress" mutagenesis, whereby lactose revertants accumulate in Lac(-) bacteria under starvation conditions in the absence of catabolite repression. Adaptive mutation is observed after long incubation and might be expected to be irrelevant in a standard assay using 48-h incubation. However, we found that elevated revertant frequencies occur under typical assay conditions when the bacterial lawn is thin, and this can cause increases in revertant frequency that mimic chemical mutagenesis when treatments are toxic but not mutagenic. Responses that resemble chemical mutagenesis were observed in the absence of mutagenic treatment in strains that revert by different frameshift mutations. The magnitude of the artifact is affected by cell density, dilution, culture age, incubation time, catabolite repression and the age and composition of media. Although the specific reversion assay is effective for quickly distinguishing classes of mutations induced by potent mutagens, its utility for discerning effects of weak mutagens may be compromised by the artifact.
Collapse
|
4
|
Abstract
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.
Collapse
|