1
|
Mutation Rate and Spectrum of the Silkworm in Normal and Temperature Stress Conditions. Genes (Basel) 2023; 14:genes14030649. [PMID: 36980921 PMCID: PMC10048334 DOI: 10.3390/genes14030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents–progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10−8 (95% confidence interval, 0.33 × 10−8–0.49 × 10−8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.
Collapse
|
2
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|
3
|
Bae W, Hong S, Park MS, Jeong HK, Lee MH, Koo HS. Single-strand annealing mediates the conservative repair of double-strand DNA breaks in homologous recombination-defective germ cells of Caenorhabditis elegans. DNA Repair (Amst) 2019; 75:18-28. [PMID: 30710866 DOI: 10.1016/j.dnarep.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/25/2022]
Abstract
A missense mutation in C. elegans RAD-54, a homolog of RAD54 that operates in the homologous recombination (HR) pathway, was found to decrease ATPase activity in vitro. The hypomorphic mutation caused hypersensitivity of C. elegans germ cells to double-strand DNA breaks (DSBs). Although the formation of RAD-51 foci at DSBs was normal in both the mutant and knockdown worms, their subsequent dissipation was slow. The rad-54-deficient phenotypes were greatly aggravated when combined with an xpf-1 mutation, suggesting a conservative role of single-strand annealing (SSA) for DSB repair in HR-defective worms. The phenotypes of doubly-deficient rad-54;xpf-1 worms were partially suppressed by a mutation of lig-4, a nonhomologous end-joining (NHEJ) factor. In summary, RAD-54 is required for the dissociation of RAD-51 from DSB sites in C. elegans germ cells. Also, NHEJ and SSA exert negative and positive effects, respectively, on genome stability when HR is defective.
Collapse
Affiliation(s)
- Woori Bae
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Seokbong Hong
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Mi So Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Ha-Kyeong Jeong
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea
| | - Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, United States
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 03772, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chain FJJ, Flynn JM, Bull JK, Cristescu ME. Accelerated rates of large-scale mutations in the presence of copper and nickel. Genome Res 2019; 29:64-73. [PMID: 30487211 PMCID: PMC6314161 DOI: 10.1101/gr.234724.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Mutation rate variation has been under intense investigation for decades. Despite these efforts, little is known about the extent to which environmental stressors accelerate mutation rates and influence the genetic load of populations. Moreover, most studies on stressors have focused on unicellular organisms and point mutations rather than large-scale deletions and duplications (copy number variations [CNVs]). We estimated mutation rates in Daphnia pulex exposed to low levels of environmental stressors as well as the effect of selection on de novo mutations. We conducted a mutation accumulation (MA) experiment in which selection was minimized, coupled with an experiment in which a population was propagated under competitive conditions in a benign environment. After an average of 103 generations of MA propagation, we sequenced 60 genomes and found significantly accelerated rates of deletions and duplications in MA lines exposed to ecologically relevant concentrations of metals. Whereas control lines had gene deletion and duplication rates comparable to other multicellular eukaryotes (1.8 × 10-6 per gene per generation), the presence of nickel and copper increased these rates fourfold. The realized mutation rate under selection was reduced to 0.4× that of control MA lines, providing evidence that CNVs contribute to mutational load. Our CNV breakpoint analysis revealed that nonhomologous recombination associated with regions of DNA fragility is the primary source of CNVs, plausibly linking metal-induced DNA strand breaks with higher CNV rates. Our findings suggest that environmental stress, in particular multiple stressors, can have profound effects on large-scale mutation rates and mutational load of multicellular organisms.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Jullien M Flynn
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - James K Bull
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | | |
Collapse
|
5
|
Arbuthnott D, Whitlock MC. Environmental stress does not increase the mean strength of selection. J Evol Biol 2018; 31:1599-1606. [PMID: 29978525 DOI: 10.1111/jeb.13351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Abstract
A common intuition among evolutionary biologists and ecologists is that environmental stress will increase the strength of selection against deleterious alleles and among alternate genotypes. However, the strength of selection is determined by the relative fitness differences among genotypes, and there is no theoretical reason why these differences should be exaggerated as mean fitness decreases. We update a recent review of the empirical results pertaining to environmental stress and the strength of selection and find that there is no overall trend towards increased selection under stress, in agreement with other recent analyses of existing data. The majority of past studies measure the strength of selection by quantifying the decrease in fitness imposed by single or multiple mutations in different environments. However, selection rarely acts on one locus independently, and the strength of selection will be determined by variation across the whole genome. We used 20 inbred lines of Drosophila melanogaster to make repeated fitness measurements of the same genotypes in four different environments. This framework allowed us to determine the variation in fitness attributable to genotype across stressful environments and to calculate the opportunity for selection among these genotypes in each stress. Although we found significant decreases in mean fitness in our stressful environments, we did not find any significant differences in the strength of selection among any of the four measured environments. Therefore, in agreement with our updated review, we find no evidence for the oft-cited verbal model that stress increases the strength of selection.
Collapse
Affiliation(s)
- Devin Arbuthnott
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Berger D, Stångberg J, Grieshop K, Martinossi-Allibert I, Arnqvist G. Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming. Proc Biol Sci 2018; 284:rspb.2017.1721. [PMID: 29118134 DOI: 10.1098/rspb.2017.1721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 01/28/2023] Open
Abstract
Mutation has a fundamental influence over evolutionary processes, but how evolutionary processes shape mutation rate remains less clear. In asexual unicellular organism, increased mutation rates have been observed in stressful environments and the reigning paradigm ascribes this increase to selection for evolvability. However, this explanation does not apply in sexually reproducing species, where little is known about how the environment affects mutation rate. Here we challenged experimental lines of seed beetle, evolved at ancestral temperature or under simulated climate warming, to repair induced mutations at ancestral and stressful temperature. Results show that temperature stress causes individuals to pass on a greater mutation load to their grand-offspring. This suggests that stress-induced mutation rates, in unicellular and multicellular organisms alike, can result from compromised germline DNA repair in low condition individuals. Moreover, lines adapted to simulated climate warming had evolved increased longevity at the cost of reproduction, and this allocation decision improved germline repair. These results suggest that mutation rates can be modulated by resource allocation trade-offs encompassing life-history traits and the germline and have important implications for rates of adaptation and extinction as well as our understanding of genetic diversity in multicellular organisms.
Collapse
Affiliation(s)
- David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Josefine Stångberg
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Karl Grieshop
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | | | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Luijckx P, Ho EKH, Stanić A, Agrawal AF. Mutation accumulation in populations of varying size: large effect mutations cause most mutational decline in the rotifer Brachionus calyciflorus under UV-C radiation. J Evol Biol 2018; 31:924-932. [PMID: 29672987 DOI: 10.1111/jeb.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/19/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV-C radiation. Lifetime reproduction assays conducted after ten and sixteen UV-C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long-term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.
Collapse
Affiliation(s)
- Pepijn Luijckx
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Andrijana Stanić
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
DNA damage response upon environmental contaminants: An exhausting work for genomic integrity. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Golubev A, Hanson AD, Gladyshev VN. Non-enzymatic molecular damage as a prototypic driver of aging. J Biol Chem 2017; 292:6029-6038. [PMID: 28264930 PMCID: PMC5391736 DOI: 10.1074/jbc.r116.751164] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The chemical potentialities of metabolites far exceed metabolic requirements. The required potentialities are realized mostly through enzymatic catalysis. The rest are realized spontaneously through organic reactions that (i) occur wherever appropriate reactants come together, (ii) are so typical that many have proper names (e.g. Michael addition, Amadori rearrangement, and Pictet-Spengler reaction), and (iii) often have damaging consequences. There are many more causes of non-enzymatic damage to metabolites than reactive oxygen species and free radical processes (the "usual suspects"). Endogenous damage accumulation in non-renewable macromolecules and spontaneously polymerized material is sufficient to account for aging and differentiates aging from wear-and-tear of inanimate objects by deriving it from metabolism, the essential attribute of life.
Collapse
Affiliation(s)
- Alexey Golubev
- From the Department of Biochemistry, Saint-Petersburg State University, Saint Petersburg 199034, Russia,
| | - Andrew D Hanson
- the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, and
| | - Vadim N Gladyshev
- the Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum. PLoS Biol 2016; 14:e1002419. [PMID: 27015430 PMCID: PMC4807879 DOI: 10.1371/journal.pbio.1002419] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health.
Collapse
|
11
|
Chinone A, Matsumoto M. DrRad51 is required for chiasmata formation in meiosis in planarian Dugesia ryukyuensis. Mol Reprod Dev 2014; 81:409-21. [PMID: 24488935 DOI: 10.1002/mrd.22308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Rad51, a conserved eukaryotic protein, mediates the homologous-recombination repair of DNA double-strand breaks that occur during both mitosis and meiosis. During prophase I of meiosis, homologous recombination enhances the linkage between homologous chromosomes to increase the accuracy of segregation at anaphase I. In polyploidy situations, however, difficulties with homologous chromosome segregation often disrupt meiosis. Yet, triploid individuals of the planarian Dugesia ryukyuensis are able to produce functional gametes through a specialized form of meiosis. To shed light on the molecular mechanisms that promote successful meiosis in triploid D. ryukyuensis, we investigated rad51 gene function. We isolated three genes of the Rad51 family, the Rad51 homolog Dr-rad51 and the Rad51 paralogs Dr-rad51B and Dr-rad51C. Dr-rad51 was expressed in germ-line and presumably in somatic stem cells, but was not necessary for the regeneration of somatic tissue. RNA-interference (RNAi) depletion of Dr-rad51 during sexualization did not affect chromosome behavior in zygotene oocytes, but did result in the loss of chiasmata at the diplotene stage. Thus, homologous recombination does not appear to be necessary for synapsis, but is needed for crossover and proper segregation in D. ryukyuensis.
Collapse
Affiliation(s)
- Ayako Chinone
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | |
Collapse
|
12
|
Matsuba C, Lewis S, Ostrow DG, Salomon MP, Sylvestre L, Tabman B, Ungvari-Martin J, Baer CF. Invariance (?) of mutational parameters for relative fitness over 400 generations of mutation accumulation in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2012; 2:1497-503. [PMID: 23275873 PMCID: PMC3516472 DOI: 10.1534/g3.112.003947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/20/2012] [Indexed: 12/03/2022]
Abstract
Evidence is accumulating that individuals in poor physiologic condition may accumulate mutational damage faster than individuals in good condition. If poor condition results from pre-existing deleterious mutations, the result is "fitness-dependent mutation rate," which has interesting theoretical implications. Here we report a study in which 10 mutation accumulation (MA) lines of the nematode Caenorhabditis elegans that had previously accumulated mutations for 250 generations under relaxed selection were expanded into sets of "second-order" MA lines and allowed to accumulate mutations for an additional 150 generations. The 10 lines were chosen on the basis of the relative change in fitness over the first 250 generations of MA, five high-fitness lines and five low-fitness lines. On average, the mutational properties (per-generation change in mean relative fitness, mutational variance, and Bateman-Mukai estimates of genomic mutation rate and average mutational effect) of the high-fitness and low-fitness did not differ significantly, and averaged over all lines, the point estimates were extremely close to those of the first-order MA experiment after 200 generations of MA. However, several nonsignificant trends indicate that low-fitness lines may in fact be more likely to suffer mutational damage than high-fitness lines.
Collapse
Affiliation(s)
- Chikako Matsuba
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525
| | - Suzanna Lewis
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525
| | | | - Matthew P. Salomon
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525
| | - Laurence Sylvestre
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525
| | - Brandon Tabman
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525
| | | | - Charles F. Baer
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525
- UF Genetics Institute, Gainesville, Florida 32610-3610
| |
Collapse
|
13
|
Abstract
Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a potentially unifying explanation for the wide range in mutation rates that exists among organisms. Natural selection appears to reduce the mutation rate of a species to a level that scales negatively with both the effective population size (N(e)), which imposes a drift barrier to the evolution of molecular refinements, and the genomic content of coding DNA, which is proportional to the target size for deleterious mutations. As a consequence of an expansion in genome size, some microbial eukaryotes with large N(e) appear to have evolved mutation rates that are lower than those known to occur in prokaryotes, but multicellular eukaryotes have experienced elevations in the genome-wide deleterious mutation rate because of substantial reductions in N(e).
Collapse
|