1
|
Peeters S, Baldry S, Korecki AJ, Srinivasan A, Wasserman WW, Simpson EM, Brown CJ. Escape from X-chromosome inactivation at KDM5C is driven by promoter-proximal DNA elements and enhanced by domain context. Hum Mol Genet 2025; 34:978-989. [PMID: 40211770 PMCID: PMC12085780 DOI: 10.1093/hmg/ddaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 05/19/2025] Open
Abstract
Over 20% of human X-linked genes escape from X-chromosome inactivation (XCI), and are important contributors to sex differences in gene expression. Candidate factors involved in escape have been identified through enrichment analyses and include both regional as well as promoter-proximal elements; however, functional testing is limited. Using both in vivo and in vitro mouse models, we refine a region of just 2.6 kb of the human escape gene KDM5C as able to drive escape from XCI. Transgenes of mouse Kdm5c escape XCI; however, human KDM5C is one of three escape genes in a more than 200 kb region, so we initially tested a BAC transgene containing a full-length version of the gene with a reporter insertion. Contrary to our expectation, this transgene failed to escape from XCI. To understand why, we moved to a mouse embryonic stem cell system and tested the BAC transgene without the reporter cassette. Despite being separated from other human escape genes, and also being tested in a different species, human KDM5C was able to escape from XCI, suggesting that the reporter integration disrupted or separated critical escape elements. We refined escape-essential sequences to only 2.6 kb including the promoter, exon 1 and contiguous 1.6 kb of the first intron, consistent with previous studies demonstrating local elements are sufficient for escape. Interestingly, dual copy insertions showed higher escape, suggesting that while local elements are important drivers for escape, the size or number of escape genes in a region can boost inactive X expression.
Collapse
Affiliation(s)
- Samantha Peeters
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
| | - Sarah Baldry
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
| | - Andrea J Korecki
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Aditi Srinivasan
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Elizabeth M Simpson
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall,Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
2
|
Lanza DG, Mao J, Lorenzo I, Liao L, Seavitt JR, Ljungberg MC, Simpson EM, DeMayo FJ, Heaney JD. An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing. Genesis 2024; 62:e23589. [PMID: 38523431 PMCID: PMC10987075 DOI: 10.1002/dvg.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Cas9 transgenes can be employed for genome editing in mouse zygotes. However, using transgenic instead of exogenous Cas9 to produce gene-edited animals creates unique issues including ill-defined transgene integration sites, the potential for prolonged Cas9 expression in transgenic embryos, and increased genotyping burden. To overcome these issues, we generated mice harboring an oocyte-specific, Gdf9 promoter driven, Cas9 transgene (Gdf9-Cas9) targeted as a single copy into the Hprt1 locus. The X-linked Hprt1 locus was selected because it is a defined integration site that does not influence transgene expression, and breeding of transgenic males generates obligate transgenic females to serve as embryo donors. Using microinjections and electroporation to introduce sgRNAs into zygotes derived from transgenic dams, we demonstrate that Gdf9-Cas9 mediates genome editing as efficiently as exogenous Cas9 at several loci. We show that genome editing efficiency is independent of transgene inheritance, verifying that maternally derived Cas9 facilitates genome editing. We also show that paternal inheritance of Gdf9-Cas9 does not mediate genome editing, confirming that Gdf9-Cas9 is not expressed in embryos. Finally, we demonstrate that off-target mutagenesis is equally rare when using transgenic or exogenous Cas9. Together, these results show that the Gdf9-Cas9 transgene is a viable alternative to exogenous Cas9.
Collapse
Affiliation(s)
- Denise G. Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Jianqiang Mao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Lan Liao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Present address: The Jackson Laboratory 600 Main St., Bar Harbor, Maine, ME, USA 04609
| | - M. Cecilia Ljungberg
- Department of Pediatrics – Neurology, Baylor College of Medicine Houston, TX, USA 77030
- Duncan Neurological Research Institute, Texas Children’s Hospital Houston, TX, USA 77030
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital Department of Medical Genetics, The University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory National Institute of Environmental Health Sciences Research Triangle Park, NC, USA 27709
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, USA 77030
| |
Collapse
|
3
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Peeters S, Leung T, Fornes O, Farkas R, Wasserman W, Brown C. Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genom Bioinform 2023; 5:lqad052. [PMID: 37260510 PMCID: PMC10227363 DOI: 10.1093/nargab/lqad052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
X-chromosome inactivation (XCI) epigenetically silences one X chromosome in every cell in female mammals. Although the majority of X-linked genes are silenced, in humans 20% or more are able to escape inactivation and continue to be expressed. Such escape genes are important contributors to sex differences in gene expression, and may impact the phenotypes of X aneuploidies; yet the mechanisms regulating escape from XCI are not understood. We have performed an enrichment analysis of transcription factor binding on the X chromosome, providing new evidence for enriched factors at the transcription start sites of escape genes. The top escape-enriched transcription factors were detected at the RPS4X promoter, a well-described human escape gene previously demonstrated to escape from XCI in a transgenic mouse model. Using a cell line model system that allows for targeted integration and inactivation of transgenes on the mouse X chromosome, we further assessed combinations of RPS4X promoter and genic elements for their ability to drive escape from XCI. We identified a small transgenic construct of only 6 kb capable of robust escape from XCI, establishing that gene-proximal elements are sufficient to permit escape, and highlighting the additive effect of multiple elements that work together in a context-specific fashion.
Collapse
Affiliation(s)
- Samantha Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiffany Leung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachelle A Farkas
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Life B, Petkau TL, Cruz GNF, Navarro-Delgado EI, Shen N, Korthauer K, Leavitt BR. FTD-associated behavioural and transcriptomic abnormalities in 'humanized' progranulin-deficient mice: A novel model for progranulin-associated FTD. Neurobiol Dis 2023; 182:106138. [PMID: 37105261 DOI: 10.1016/j.nbd.2023.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by neuropathology and behavioural changes. A common genetic cause of FTD is haploinsufficiency of the gene progranulin (GRN). Mouse models of progranulin deficiency have provided insight into progranulin neurobiology, but the description of phenotypes with preclinical relevance has been limited in the currently available heterozygous progranulin-null mice. The identification of robust and reproducible FTD-associated behavioural, neuropathological, and biochemical phenotypes in progranulin deficient mice is a critical step in the preclinical development of therapies for FTD. In this work, we report the generation of a novel, 'humanized' mouse model of progranulin deficiency that expresses a single, targeted copy of human GRN in the absence of mouse progranulin. We also report the in-depth, longitudinal characterization of humanized progranulin-deficient mice and heterozygous progranulin-null mice over 18 months. Our analysis yielded several novel progranulin-dependent physiological and behavioural phenotypes, including increased marble burying, open field hyperactivity, and thalamic microgliosis in both models. RNAseq analysis of cortical tissue revealed an overlapping profile of transcriptomic dysfunction. Further transcriptomic analysis offers new insights into progranulin neurobiology. In sum, we have identified several consistent phenotypes in two independent mouse models of progranulin deficiency that are expected to be useful endpoints in the development of therapies for progranulin-deficient FTD. Furthermore, the presence of the human progranulin gene in the humanized progranulin-deficient mice will expedite the development of clinically translatable gene therapy strategies.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Giuliano N F Cruz
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erick I Navarro-Delgado
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ning Shen
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC V6T 2B5, Canada; Center for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
6
|
Balaton BP, Dixon-McDougall T, Peeters SB, Brown CJ. The eXceptional nature of the X chromosome. Hum Mol Genet 2019; 27:R242-R249. [PMID: 29701779 DOI: 10.1093/hmg/ddy148] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
The X chromosome is unique in the genome. In this review we discuss recent advances in our understanding of the genetics and epigenetics of the X chromosome. The X chromosome shares limited conservation with its ancestral homologue the Y chromosome and the resulting difference in X-chromosome dosage between males and females is largely compensated for by X-chromosome inactivation. The process of inactivation is initiated by the long non-coding RNA X-inactive specific transcript (XIST) and achieved through interaction with multiple synergistic silencing pathways. Identification of Xist-interacting proteins has given insight into these processes yet the cascade of events from initiation to maintenance have still to be resolved. In particular, the initiation of inactivation in humans has been challenging to study as: it occurs very early in development; most human embryonic stem cell lines already have an inactive X; and the process seems to differ from mouse. Another difference between human and mouse X inactivation is the larger number of human genes that escape silencing. In humans over 20% of X-linked genes continue to be expressed from the otherwise inactive X chromosome. We are only beginning to understand how such escape occurs but there is growing recognition that escapees contribute to sexually dimorphic traits. The unique biology and epigenetics of the X chromosome have often led to its exclusion from disease studies, yet the X constitutes 5% of the genome and is an important contributor to disease, often in a sex-specific manner.
Collapse
Affiliation(s)
- Bradley P Balaton
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Dixon-McDougall
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samantha B Peeters
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn J Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Peeters SB, Korecki AJ, Simpson EM, Brown CJ. Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse. Hum Mol Genet 2019; 27:1252-1262. [PMID: 29401310 PMCID: PMC6159535 DOI: 10.1093/hmg/ddy039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
8
|
Wong NK, Huang CL, Islam R, Yip SP. Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies. J Hematol Oncol 2018; 11:131. [PMID: 30466456 PMCID: PMC6251105 DOI: 10.1186/s13045-018-0673-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Recent studies have revealed that non-coding regions comprise the vast majority of the human genome and long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs that has been implicated in a variety of biological processes. Abnormal expression of lncRNAs has also been linked to different human diseases including cancers, yet the regulatory mechanisms and functional effects of lncRNAs are still ambiguous, and the molecular details also need to be confirmed. Unlike protein-coding gene, it is much more challenging to unravel the roles of lncRNAs owing to their unique and complex features such as functional diversity and low conservation among species, which greatly hamper their experimental characterization. In this review, we summarize and discuss both conventional and advanced approaches for the identification and functional characterization of lncRNAs related to hematological malignancies. In particular, the utility and advancement of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system as gene-editing tools are envisioned to facilitate the molecular dissection of lncRNAs via different knock-in/out strategies. Besides experimental considerations specific to lncRNAs, the roles of lncRNAs in the pathogenesis and progression of leukemia are also highlighted in the review. We expect that these insights may ultimately lead to clinical applications including development of biomarkers and novel therapeutic approaches targeting lncRNAs.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China.
| | - Rashidul Islam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
9
|
Wang W, Guo X, Li YM, Wang XY, Yang XJ, Wang YF, Wang TY. Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur J Pharm Sci 2018; 123:539-545. [DOI: 10.1016/j.ejps.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
|
10
|
Wheeler BS, Anderson E, Frøkjær-Jensen C, Bian Q, Jorgensen E, Meyer BJ. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution. eLife 2016; 5. [PMID: 27572259 PMCID: PMC5047749 DOI: 10.7554/elife.17365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI:http://dx.doi.org/10.7554/eLife.17365.001 DNA inside cells is packaged into structures called chromosomes, each of which contains numerous genes. Many organisms, including humans, have two copies of most chromosomes in their cells. If the process of cell division goes awry, cells can end up with too many or too few copies of their chromosomes, which can cause serious illnesses. Sex chromosomes pose a conundrum for cells. In humans, females have two copies of the X chromosome, whereas males only have one. This means that males have half the copy number (dose) of genes on the X chromosome. Human cells correct this imbalance by suppressing the activity, or expression, of most of the genes on one of the X chromosomes in females. “Dosage compensation” also occurs in the roundworm species Caenorhabditis elegans, because male worms have one X chromosome whilst hermaphrodites have two. The dosage compensation mechanism in roundworms differs from that in humans. It involves turning down the expression of both hermaphrodite X chromosomes by half. The process is enacted by a dosage compensation complex that binds to specific sites along both hermaphrodite X chromosomes. Dosage compensation mechanisms that reduce X chromosome expression in females cause sex chromosomes to have lower gene expression than non-sex chromosomes. Modern sex chromosomes evolved from a pair of non-sex chromosomes, and males lost one copy of all of the genes located on those ancestral chromosomes. This evolutionary history causes both sexes to have lower gene expression from X chromosomes than the other chromosomes, raising the question of whether a mechanism exists to balance out the difference in gene expression between sex chromosomes and non-sex chromosomes. Wheeler et al. now show that the expression of any foreign gene artificially added to the X chromosomes of C. elegans is equalized between males and hermaphrodites despite the difference in gene dose. The equalization works regardless of where on the X chromosome the new gene is added. The foreign gene does not need to be adjacent to a binding site for the dosage compensation complex. These results indicate that dosage compensation mechanisms regulate gene expression on a chromosome-wide scale. Wheeler et al. also show that genes added to X chromosomes are expressed at half the level as the same genes added to non-sex chromosomes. These results mean that no chromosome-wide mechanism balances gene expression levels between the X chromosome and the non-sex chromosomes. It remains unknown how C. elegans, and many other living organisms, evolved to tolerate a lower level of gene expression from the sex chromosomes. Instead of a chromosome-wide mechanism, it is likely that individual genes evolved different ways to alter their expression levels. Working out what these mechanisms are remains a challenge for further research. DOI:http://dx.doi.org/10.7554/eLife.17365.002
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erika Anderson
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christian Frøkjær-Jensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States.,Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Qian Bian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Erik Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
11
|
de Leeuw CN, Korecki AJ, Berry GE, Hickmott JW, Lam SL, Lengyell TC, Bonaguro RJ, Borretta LJ, Chopra V, Chou AY, D'Souza CA, Kaspieva O, Laprise S, McInerny SC, Portales-Casamar E, Swanson-Newman MI, Wong K, Yang GS, Zhou M, Jones SJM, Holt RA, Asokan A, Goldowitz D, Wasserman WW, Simpson EM. rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Mol Brain 2016; 9:52. [PMID: 27164903 PMCID: PMC4862195 DOI: 10.1186/s13041-016-0232-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. METHODS For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. RESULTS The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. CONCLUSIONS Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.
Collapse
Affiliation(s)
- Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Garrett E Berry
- Gene Therapy Centre, University of North Carolina, Chapel Hill, NC, 27599, U.S.A
| | - Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Lisa J Borretta
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Vikramjit Chopra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Cletus A D'Souza
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Olga Kaspieva
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Magdalena I Swanson-Newman
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Kaelan Wong
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - George S Yang
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Robert A Holt
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada
| | - Aravind Asokan
- Gene Therapy Centre, University of North Carolina, Chapel Hill, NC, 27599, U.S.A
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada.
| |
Collapse
|
12
|
Kashi K, Henderson L, Bonetti A, Carninci P. Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:3-15. [PMID: 26477492 DOI: 10.1016/j.bbagrm.2015.10.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023]
Abstract
It is known that more than 70% of mammalian genomes are transcribed, yet the vast majority of transcripts do not code for proteins. Are these noncoding transcripts merely transcriptional noise, or do they serve a biological purpose? Recent developments in genomic analysis technologies, especially sequencing methods, have allowed researchers to create a large atlas of transcriptomes, study subcellular localization, and investigate potential interactions with proteins for a growing number of transcripts. Here, we review the current methodologies available for discovering and investigating functions of long noncoding RNAs (lncRNAs), which require a wide variety of applications to study their potential biological roles. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Kaori Kashi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lindsey Henderson
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Alessandro Bonetti
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
13
|
Merzouk S, Deuve JL, Dubois A, Navarro P, Avner P, Morey C. Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 2014; 7:11. [PMID: 25053977 PMCID: PMC4105886 DOI: 10.1186/1756-8935-7-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
Background Silencing of the paternal X chromosome (Xp), a phenomenon known as imprinted X-chromosome inactivation (I-XCI), characterises, amongst mouse extraembryonic lineages, the primitive endoderm and the extraembryonic endoderm (XEN) stem cells derived from it. Results Using a combination of chromatin immunoprecipitation characterisation of histone modifications and single-cell expression studies, we show that whilst the Xp in XEN cells, like the inactive X chromosome in other cell types, globally accumulates the repressive histone mark H3K27me3, a large number of Xp genes locally lack H3K27me3 and escape from I-XCI. In most cases this escape is specific to the XEN cell lineage. Importantly, the degree of escape and the genes concerned remain unchanged upon XEN conversion into visceral endoderm, suggesting stringent control of I-XCI in XEN derivatives. Surprisingly, chemical inhibition of EZH2, a member of the Polycomb repressive complex 2 (PRC2), and subsequent loss of H3K27me3 on the Xp, do not drastically perturb the pattern of silencing of Xp genes in XEN cells. Conclusions The observations that we report here suggest that the maintenance of gene expression profiles of the inactive Xp in XEN cells involves a tissue-specific mechanism that acts partly independently of PRC2 catalytic activity.
Collapse
Affiliation(s)
- Sarra Merzouk
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Pasteur Cell, Pierre and Marie Curie University (UPMC), 25 rue du Dr Roux, 75015 Paris, France
| | - Jane Lynda Deuve
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Pierre and Marie Curie University (UPMC), UMR7622, Institute of Biology of Paris-Seine (IBPS), 75005 Paris, France
| | - Agnès Dubois
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Pablo Navarro
- Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Philip Avner
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Dynamics of Epigenetic Regulation, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Céline Morey
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
14
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
15
|
Horvath LM, Li N, Carrel L. Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLoS Genet 2013; 9:e1003952. [PMID: 24278033 PMCID: PMC3836711 DOI: 10.1371/journal.pgen.1003952] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/27/2013] [Indexed: 12/03/2022] Open
Abstract
In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI), although some “escape” XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s) retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI. Early in mammalian female development, one X chromosome is largely silenced to equalize X-linked gene expression between the sexes. Nevertheless, some genes “escape” this silencing and therefore are expressed from both X chromosomes. Understanding how these escape genes are regulated, particularly when they closely juxtapose silenced genes, may give important insight into regulatory transitions throughout the genome. To evaluate sequences that are essential for appropriate inactive X expression we analyzed large transgenes that integrated on the X chromosome in mouse embryonic stem cells. Transgenes that include an escape gene, Kdm5c, but lack all or part of the downstream sequences, including the X-inactivation boundary, still escape X inactivation. Nevertheless, downstream genes at the transgene insertion site are misregulated and now inappropriately escape X inactivation as well. These data identify two important regulatory activities at this locus. First, sequences retained within the truncated transgene are sufficient to direct the Kdm5c gene to escape X inactivation. Further, we have uncovered a function for an X-inactivation boundary in protecting adjacent genes from escape.
Collapse
Affiliation(s)
- Lindsay M. Horvath
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Nan Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cotton AM, Chen CY, Lam LL, Wasserman WW, Kobor MS, Brown CJ. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum Mol Genet 2013; 23:1211-23. [PMID: 24158853 PMCID: PMC4051349 DOI: 10.1093/hmg/ddt513] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome.
Collapse
|
17
|
Deussing JM. Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res 2013; 354:9-25. [PMID: 24078022 DOI: 10.1007/s00441-013-1708-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
In the 1980s, the basic principles of gene targeting were discovered and forged into sharp tools for efficient and precise engineering of the mouse genome. Since then, genetic mouse models have substantially contributed to our understanding of major neurobiological concepts and are of utmost importance for our comprehension of neuropsychiatric disorders. The "domestication" of site-specific recombinases and the continuous creative technological developments involving the implementation of previously identified biological principles such as transcriptional and posttranslational control now enable conditional mutagenesis with high spatial and temporal resolution. The initiation and successful accomplishment of large-scale efforts to annotate functionally the entire mouse genome and to build strategic resources for the research community have significantly accelerated the rapid proliferation and broad propagation of mouse genetic tools. Addressing neurobiological processes with the assistance of genetic mouse models is a routine procedure in psychiatric research and will be further extended in order to improve our understanding of disease mechanisms. In light of the highly complex nature of psychiatric disorders and the current lack of strong causal genetic variants, a major future challenge is to model of psychiatric disorders more appropriately. Humanized mice, and the recently developed toolbox of site-specific nucleases for more efficient and simplified tailoring of the genome, offer the perspective of significantly improved models. Ultimately, these tools will push the limits of gene targeting beyond the mouse to allow genome engineering in any model organism of interest.
Collapse
Affiliation(s)
- Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Kraepelinstrasse 2-10, 80804, Munich, Germany,
| |
Collapse
|