1
|
Tonelli A, Cousin P, Jankowski A, Wang B, Dorier J, Barraud J, Zunjarrao S, Gambetta MC. Systematic screening of enhancer-blocking insulators in Drosophila identifies their DNA sequence determinants. Dev Cell 2025; 60:630-645.e9. [PMID: 39532105 DOI: 10.1016/j.devcel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long-range transcriptional activation of gene promoters by abundant enhancers in animal genomes calls for mechanisms to limit inappropriate regulation. DNA elements called insulators serve this purpose by shielding promoters from an enhancer when interposed. Unlike promoters and enhancers, insulators have not been systematically characterized due to lacking high-throughput screening assays, and questions regarding how insulators are distributed and encoded in the genome remain. Here, we establish "insulator-seq" as a plasmid-based massively parallel reporter assay in Drosophila cultured cells to perform a systematic insulator screen of selected genomic loci. Screening developmental gene loci showed that not all insulator protein binding sites effectively block enhancer-promoter communication. Deep insulator mutagenesis identified sequences flexibly positioned around the CTCF insulator protein binding motif that are critical for functionality. The ability to screen millions of DNA sequences without positional effect has enabled functional mapping of insulators and provided further insights into the determinants of insulators.
Collapse
Affiliation(s)
- Anastasiia Tonelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksander Jankowski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Bihan Wang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Jonas Barraud
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sanyami Zunjarrao
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
2
|
Willi B, Brügger L, Müller L, Tabor S, Bender W, Müller M. Molecular and genetic characterization of Cbx-Basel , a new dominant allele of Ultrabithorax in D. melanogaster. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001321. [PMID: 39450185 PMCID: PMC11499937 DOI: 10.17912/micropub.biology.001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Dominant gain-of-function alleles for the homeotic gene Ultrabithorax ( Ubx ) have been known for a long time. They are summarized under the name Contrabithorax ( Cbx ). Such alleles are rather easy to spot because the morphology of the conspicuous dorsal wing appendage is often dramatically changed. The majority of these alleles is associated with chromosomal rearrangements that alter the genetic landscape of the Ultrabithorax locus. Thereby, UBX protein is ectopically expressed in the wing primordium where it is normally absent. Since Ubx specifies haltere identity, wing cells expressing UBX are determined to become haltere cells. However, apart from the prototypic allele Cbx-1 , information on the molecular details of Contrabithorax alleles is scarce. Here, we present a rather detailed account on a novel Cbx-1-like allele called Cbx-Basel . The results of our study corroborate the model that has been postulated for the Cbx-1 wing phenotype.
Collapse
Affiliation(s)
- Basil Willi
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | - Lukas Brügger
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | - Leandra Müller
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | | | | | - Martin Müller
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| |
Collapse
|
3
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
4
|
Lizana L, Schwartz YB. The scales, mechanisms, and dynamics of the genome architecture. SCIENCE ADVANCES 2024; 10:eadm8167. [PMID: 38598632 PMCID: PMC11006219 DOI: 10.1126/sciadv.adm8167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Even when split into several chromosomes, DNA molecules that make up our genome are too long to fit into the cell nuclei unless massively folded. Such folding must accommodate the need for timely access to selected parts of the genome by transcription factors, RNA polymerases, and DNA replication machinery. Here, we review our current understanding of the genome folding inside the interphase nuclei. We consider the resulting genome architecture at three scales with a particular focus on the intermediate (meso) scale and summarize the insights gained from recent experimental observations and diverse computational models.
Collapse
Affiliation(s)
- Ludvig Lizana
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | | |
Collapse
|
5
|
Ibragimov A, Bing XY, Shidlovskii YV, Levine M, Georgiev P, Schedl P. lncRNA read-through regulates the BX-C insulator Fub-1. eLife 2023; 12:e84711. [PMID: 37643473 PMCID: PMC10497285 DOI: 10.7554/elife.84711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Though long non-coding RNAs (lncRNAs) represent a substantial fraction of the Pol II transcripts in multicellular animals, only a few have known functions. Here we report that the blocking activity of the Bithorax complex (BX-C) Fub-1 boundary is segmentally regulated by its own lncRNA. The Fub-1 boundary is located between the Ultrabithorax (Ubx) gene and the bxd/pbx regulatory domain, which is responsible for regulating Ubx expression in parasegment PS6/segment A1. Fub-1 consists of two hypersensitive sites, HS1 and HS2. HS1 is an insulator while HS2 functions primarily as an lncRNA promoter. To activate Ubx expression in PS6/A1, enhancers in the bxd/pbx domain must be able to bypass Fub-1 blocking activity. We show that the expression of the Fub-1 lncRNAs in PS6/A1 from the HS2 promoter inactivates Fub-1 insulating activity. Inactivation is due to read-through as the HS2 promoter must be directed toward HS1 to disrupt blocking.
Collapse
Affiliation(s)
- Airat Ibragimov
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Xin Yang Bing
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
- Department of Biology and General Genetics, Sechenov UniversityMoscowRussian Federation
| | - Michael Levine
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
6
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary bypass activity in the abdominal-B region of the Drosophila bithorax complex is position dependent and regulated. Open Biol 2023; 13:230035. [PMID: 37582404 PMCID: PMC10427195 DOI: 10.1098/rsob.230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Expression of Abdominal-B (Abd-B) in abdominal segments A5-A8 is controlled by four regulatory domains, iab-5-iab-8. Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements (Mcp, Fab-7, Fab-7 and Fab-8). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can 'jump over' intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Kyrchanova O, Sokolov V, Tikhonov M, Manukyan G, Schedl P, Georgiev P. Transcriptional Readthrough Interrupts Boundary Function in Drosophila. Int J Mol Sci 2023; 24:11368. [PMID: 37511131 PMCID: PMC10379149 DOI: 10.3390/ijms241411368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In higher eukaryotes, distance enhancer-promoter interactions are organized by topologically associated domains, tethering elements, and chromatin insulators/boundaries. While insulators/boundaries play a central role in chromosome organization, the mechanisms regulating their functions are largely unknown. In the studies reported here, we have taken advantage of the well-characterized Drosophila bithorax complex (BX-C) to study one potential mechanism for controlling boundary function. The regulatory domains of BX-C are flanked by boundaries, which block crosstalk with their neighboring domains and also support long-distance interactions between the regulatory domains and their target gene. As many lncRNAs have been found in BX-C, we asked whether readthrough transcription (RT) can impact boundary function. For this purpose, we took advantage of two BX-C boundary replacement platforms, Fab-7attP50 and F2attP, in which the Fab-7 and Fub boundaries, respectively, are deleted and replaced with an attP site. We introduced boundary elements, promoters, and polyadenylation signals arranged in different combinations and then assayed for boundary function. Our results show that RT can interfere with boundary activity. Since lncRNAs represent a significant fraction of Pol II transcripts in multicellular eukaryotes, it is therefore possible that RT may be a widely used mechanism to alter boundary function and regulation of gene expression.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Maxim Tikhonov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Galya Manukyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
8
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary Bypass Activity in the Abdominal-B Region of the Drosophila Bithorax Complex is Position Dependent and Regulated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543971. [PMID: 37333165 PMCID: PMC10274778 DOI: 10.1101/2023.06.06.543971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Expression of Abdominal-B ( Abd-B ) in abdominal segments A5 - A8 is controlled by four regulatory domains, iab-5 - iab-8 . Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements ( Mcp , Fab-7 , Fab-7 and Fab-8 ). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can "jump over" intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation. Summary Statement Boundaries separating Abd-B regulatory domains block crosstalk between domains and mediate their interactions with Abd-B . The latter function is location but not orientation dependent.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
9
|
Kyrchanova O, Sokolov V, Tikhonov M, Schedl P, Georgiev P. Transcriptional read through interrupts boundary function in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528790. [PMID: 36824960 PMCID: PMC9949125 DOI: 10.1101/2023.02.16.528790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In higher eukaryotes enhancer-promoter interactions are known to be restricted by the chromatin insulators/boundaries that delimit topologically associated domains (TADs); however, there are instances in which enhancer-promoter interactions span one or more boundary elements/TADs. At present, the mechanisms that enable cross-TAD regulatory interaction are not known. In the studies reported here we have taken advantage of the well characterized Drosophila Bithorax complex (BX-C) to study one potential mechanism for controlling boundary function and TAD organization. The regulatory domains of BX-C are flanked by boundaries which function to block crosstalk with their neighboring domains and also to support long distance interactions between the regulatory domains and their target gene. As many lncRNAs have been found in BX-C, we asked whether transcriptional readthrough can impact boundary function. For this purpose, we took advantage of two BX-C boundary replacement platforms, Fab-7 attP50 and F2 attP , in which the Fab-7 and Fub boundaries, respectively, are deleted and replaced with an attP site. We introduced boundary elements, promoters and polyadenylation signals arranged in different combinations and then assayed for boundary function. Our results show that transcriptional readthrough can interfere with boundary activity. Since lncRNAs represent a significant fraction of Pol II transcripts in multicellular eukaryotes, it is possible that many of them may function in the regulation of TAD organization. Author Summary Recent studies have shown that much genome in higher eukaryotes is transcribed into non-protein coding lncRNAs. It is though that lncRNAs may preform important regulatory functions, including the formation of protein complexes, organization of functional interactions between enhancers and promoters and the maintenance of open chromatin. Here we examined how transcription from promoters inserted into the Drosophila Bithorax complex can impact the boundaries that are responsible for establishing independent regulatory domains. Surprisingly, we found that even a relatively low level of transcriptional readthrough can impair boundary function. Transcription also affects the activity of enhancers located in BX-C regulatory domains. Taken together, our results raise the possibility that transcriptional readthrough may be a widely used mechanism to alter chromosome structure and regulate gene expression.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia,Corresponding author: (PG), (PS)
| | - Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Maxim Tikhonov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA,Corresponding author: (PG), (PS)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia,Corresponding author: (PG), (PS)
| |
Collapse
|
10
|
Kahn TG, Savitsky M, Kuong C, Jacquier C, Cavalli G, Chang JM, Schwartz YB. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. SCIENCE ADVANCES 2023; 9:eade0090. [PMID: 36735780 PMCID: PMC9897668 DOI: 10.1126/sciadv.ade0090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Drosophila insulators were the first DNA elements found to regulate gene expression by delimiting chromatin contacts. We still do not know how many of them exist and what impact they have on the Drosophila genome folding. Contrary to vertebrates, there is no evidence that fly insulators block cohesin-mediated chromatin loop extrusion. Therefore, their mechanism of action remains uncertain. To bridge these gaps, we mapped chromatin contacts in Drosophila cells lacking the key insulator proteins CTCF and Cp190. With this approach, we found hundreds of insulator elements. Their study indicates that Drosophila insulators play a minor role in the overall genome folding but affect chromatin contacts locally at many loci. Our observations argue that Cp190 promotes cobinding of other insulator proteins and that the model, where Drosophila insulators block chromatin contacts by forming loops, needs revision. Our insulator catalog provides an important resource to study mechanisms of genome folding.
Collapse
Affiliation(s)
- Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Chikuan Kuong
- Department of Computer Science, National Chengchi University, Taipei City, Taiwan
| | | | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, Montpellier, France
| | - Jia-Ming Chang
- Department of Computer Science, National Chengchi University, Taipei City, Taiwan
| | | |
Collapse
|
11
|
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int J Mol Sci 2023; 24:ijms24032855. [PMID: 36769179 PMCID: PMC9917889 DOI: 10.3390/ijms24032855] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.
Collapse
|
12
|
The Drosophila Fab-7 boundary modulates Abd-B gene activity by guiding an inversion of collinear chromatin organization and alternate promoter use. Cell Rep 2023; 42:111967. [PMID: 36640345 DOI: 10.1016/j.celrep.2022.111967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Hox genes encode transcription factors that specify segmental identities along the anteroposterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, a feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive changes in histone modifications, chromatin architecture, and use of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compare chromatin organization in cell lines and larvae, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary for insulation between 3D domains carrying different histone modifications. Interestingly, we detect a non-canonical inversion of collinear chromatin dynamics at Abd-B, with the domain of active histone modifications progressively decreasing in size. This dynamic chromatin organization differentially activates the alternative promoters of the Abd-B gene, thereby expanding the possibilities for fine-tuning of transcriptional output.
Collapse
|
13
|
Kaushal A, Dorier J, Wang B, Mohana G, Taschner M, Cousin P, Waridel P, Iseli C, Semenova A, Restrepo S, Guex N, Aiden EL, Gambetta MC. Essential role of Cp190 in physical and regulatory boundary formation. SCIENCE ADVANCES 2022; 8:eabl8834. [PMID: 35559678 PMCID: PMC9106302 DOI: 10.1126/sciadv.abl8834] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Boundaries in animal genomes delimit contact domains with enhanced internal contact frequencies and have debated functions in limiting regulatory cross-talk between domains and guiding enhancers to target promoters. Most mammalian boundaries form by stalling of chromosomal loop-extruding cohesin by CTCF, but most Drosophila boundaries form CTCF independently. However, how CTCF-independent boundaries form and function remains largely unexplored. Here, we assess genome folding and developmental gene expression in fly embryos lacking the ubiquitous boundary-associated factor Cp190. We find that sequence-specific DNA binding proteins such as CTCF and Su(Hw) directly interact with and recruit Cp190 to form most promoter-distal boundaries. Cp190 is essential for early development and prevents regulatory cross-talk between specific gene loci that pattern the embryo. Cp190 was, in contrast, dispensable for long-range enhancer-promoter communication at tested loci. Cp190 is thus currently the major player in fly boundary formation and function, revealing that diverse mechanisms evolved to partition genomes into independent regulatory domains.
Collapse
Affiliation(s)
- Anjali Kaushal
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bihan Wang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Giriram Mohana
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anastasiia Semenova
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Restrepo
- arcoris bio AG, Lüssirainstrasse 52, 6300 Zug, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- National Institute of Genetics, 1111 Yaya, Mishima, Shizuoka 411-8540, Japan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 20120, China
| | | |
Collapse
|
14
|
Warwick T, Schulz MH, Gilsbach R, Brandes RP, Seuter S. Nuclear receptor activation shapes spatial genome organization essential for gene expression control: lessons learned from the vitamin D receptor. Nucleic Acids Res 2022; 50:3745-3763. [PMID: 35325193 PMCID: PMC9023275 DOI: 10.1093/nar/gkac178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Spatial genome organization is tightly controlled by several regulatory mechanisms and is essential for gene expression control. Nuclear receptors are ligand-activated transcription factors that modulate physiological and pathophysiological processes and are primary pharmacological targets. DNA binding of the important loop-forming insulator protein CCCTC-binding factor (CTCF) was modulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We performed CTCF HiChIP assays to produce the first genome-wide dataset of CTCF long-range interactions in 1,25(OH)2D3-treated cells, and to determine whether dynamic changes of spatial chromatin interactions are essential for fine-tuning of nuclear receptor signaling. We detected changes in 3D chromatin organization upon vitamin D receptor (VDR) activation at 3.1% of all observed CTCF interactions. VDR binding was enriched at both differential loop anchors and within differential loops. Differential loops were observed in several putative functional roles including TAD border formation, promoter-enhancer looping, and establishment of VDR-responsive insulated neighborhoods. Vitamin D target genes were enriched in differential loops and at their anchors. Secondary vitamin D effects related to dynamic chromatin domain changes were linked to location of downstream transcription factors in differential loops. CRISPR interference and loop anchor deletion experiments confirmed the functional relevance of nuclear receptor ligand-induced adjustments of the chromatin 3D structure for gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Redundant enhancers in the iab-5 domain cooperatively activate Abd-B in the A5 and A6 abdominal segments of Drosophila. Development 2021; 148:272019. [PMID: 34473267 DOI: 10.1242/dev.199827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/21/2021] [Indexed: 01/10/2023]
Abstract
The Abdominal-B (Abd-B) gene belongs to the bithorax complex and its expression is controlled by four regulatory domains, iab-5, iab-6, iab-7 and iab-8, each of which is thought to be responsible for directing the expression of Abd-B in one of the abdominal segments from A5 to A8. A variety of experiments have supported the idea that BX-C regulatory domains are functionally autonomous and that each domain is both necessary and sufficient to orchestrate the development of the segment they specify. Unexpectedly, we discovered that this model does not always hold. Instead, we find that tissue-specific enhancers located in the iab-5 domain are required for the proper activation of Abd-B not only in A5 but also in A6. Our findings indicate that the functioning of the iab-5 and iab-6 domains in development of the adult cuticle A5 and A6 in males fit better with an additive model, much like that first envisioned by Ed Lewis.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
16
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
17
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Redundant enhancers in the iab-5 domain cooperatively activate Abd-B in the A5 and A6 abdominal segments of Drosophila.. [DOI: 10.1101/2021.05.22.445252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe homeotic Abdominal-B (Abd-B) gene belongs to Bithorax complex and is regulated by four regulatory domains named iab-5, iab-6, iab-7 and iab-8, each of which is thought to be responsible for directing the expression of Abd-B in one of the abdominal segments from A5 to A8. It is assumed that male specific features of the adult cuticle in A5 is solely dependent on regulatory elements located in iab-5, while the regulatory elements in the iab-6 are both necessary and sufficient for the proper differentiation of the A6 cuticle. Unexpectedly, we found that this long held assumption is not correct. Instead, redundant tissue-specific enhancers located in the iab-5 domain are required for the proper activation of Abd-B not only in A5 but also in A6. Our study of deletions shows that the iab-5 initiator is essential for the functioning of the iab-5 enhancers in A5, as well as for the correct differentiation of A6. This requirement is circumvented by deletions that remove the initiator and most of the iab-5 regulatory domain sequences. While the remaining iab-5 enhancers are inactive in A5, they are activated in A6 and contribute to the differentiation of this segment. In this case, Abd-B stimulation by the iab-5 enhancers in A6 depends on the initiators in the iab-4 and iab-6 domains.Summary StatementIn Drosophila, the segmental-specific expression of the homeotic gene Abdominal-B in the abdominal segments is regulated by autonomous regulatory domains. We demonstrated cooperation between these domains in activation of Abdominal-B.
Collapse
|
18
|
Fujioka M, Nezdyur A, Jaynes JB. An insulator blocks access to enhancers by an illegitimate promoter, preventing repression by transcriptional interference. PLoS Genet 2021; 17:e1009536. [PMID: 33901190 PMCID: PMC8102011 DOI: 10.1371/journal.pgen.1009536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Several distinct activities and functions have been described for chromatin insulators, which separate genes along chromosomes into functional units. Here, we describe a novel mechanism of functional separation whereby an insulator prevents gene repression. When the homie insulator is deleted from the end of a Drosophila even skipped (eve) locus, a flanking P-element promoter is activated in a partial eve pattern, causing expression driven by enhancers in the 3’ region to be repressed. The mechanism involves transcriptional read-through from the flanking promoter. This conclusion is based on the following. Read-through driven by a heterologous enhancer is sufficient to repress, even when homie is in place. Furthermore, when the flanking promoter is turned around, repression is minimal. Transcriptional read-through that does not produce anti-sense RNA can still repress expression, ruling out RNAi as the mechanism in this case. Thus, transcriptional interference, caused by enhancer capture and read-through when the insulator is removed, represses eve promoter-driven expression. We also show that enhancer-promoter specificity and processivity of transcription can have decisive effects on the consequences of insulator removal. First, a core heat shock 70 promoter that is not activated well by eve enhancers did not cause read-through sufficient to repress the eve promoter. Second, these transcripts are less processive than those initiated at the P-promoter, measured by how far they extend through the eve locus, and so are less disruptive. These results highlight the importance of considering transcriptional read-through when assessing the effects of insulators on gene expression. Several distinct activities and functions have been described for chromatin insulators, which are regulatory DNA elements that separate genes along chromosomes into functional units. Here, we describe how insulators can prevent repression of one gene by preventing inappropriate transcription of another gene, without blocking read-through of transcription per se. When the insulator homie is deleted from the end of a transgenic eve locus, a flanking transposable element promoter is activated by eve enhancers, causing repression of the eve promoter. The mechanism involves transcriptional read-through from the flanking promoter, which disrupts normal eve enhancer-promoter activities. When the flanking promoter is turned around, repression of eve is minimal. Thus, transcriptional interference, caused by enhancer capture and read-through when the insulator is removed, represses the eve promoter. These results show a novel role for transcriptional read-through in the effects of insulators on gene expression.
Collapse
Affiliation(s)
- Miki Fujioka
- Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Anastasiya Nezdyur
- Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James B. Jaynes
- Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster. Sci Rep 2021; 11:4156. [PMID: 33603202 PMCID: PMC7892861 DOI: 10.1038/s41598-021-83734-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
The autonomy of segment-specific regulatory domains in the Bithorax complex is conferred by boundary elements and associated Polycomb response elements (PREs). The Fab-6 boundary is located at the junction of the iab-5 and iab-6 domains. Previous studies mapped it to a nuclease hypersensitive region 1 (HS1), while the iab-6 PRE was mapped to a second hypersensitive region HS2 nearly 3 kb away. To analyze the role of HS1 and HS2 in boundary we generated deletions of HS1 or HS1 + HS2 that have attP site for boundary replacement experiments. The 1389 bp HS1 deletion can be rescued by a 529 bp core Fab-6 sequence that includes two CTCF sites. However, Fab-6 HS1 cannot rescue the HS1 + HS2 deletion or substitute for another BX-C boundary - Fab-7. For this it must be combined with a PRE, either Fab-7 HS3, or Fab-6 HS2. These findings suggest that the boundary function of Fab-6 HS1 must be bolstered by a second element that has PRE activity.
Collapse
Affiliation(s)
- Nikolay Postika
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Paul Schedl
- grid.419021.f0000 0004 0380 8267Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Pavel Georgiev
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Olga Kyrchanova
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.419021.f0000 0004 0380 8267Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| |
Collapse
|
20
|
Cavalheiro GR, Pollex T, Furlong EE. To loop or not to loop: what is the role of TADs in enhancer function and gene regulation? Curr Opin Genet Dev 2021; 67:119-129. [PMID: 33497970 DOI: 10.1016/j.gde.2020.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023]
Abstract
The past decade has seen a huge jump in the resolution and scale at which we can interrogate the three-dimensional properties of the genome. This revealed different types of chromatin structures including topologically associating domains, partitioning genes and their enhancers into interacting domains. While the visualisation of these topologies and their dynamics has dramatically improved, our understanding of their underlying mechanisms and functional roles in gene expression has lagged behind. A suite of recent studies have addressed this using genetic manipulations to perturb topological features and loops at different scales. Here we assess the new biological insights gained on the functional relationship between genome topology and gene expression, with a particular focus on enhancer function.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany; Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany
| | - Eileen Em Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
21
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|
22
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
23
|
Kyrchanova O, Maksimenko O, Ibragimov A, Sokolov V, Postika N, Lukyanova M, Schedl P, Georgiev P. The insulator functions of the Drosophila polydactyl C2H2 zinc finger protein CTCF: Necessity versus sufficiency. SCIENCE ADVANCES 2020; 6:eaaz3152. [PMID: 32232161 PMCID: PMC7096168 DOI: 10.1126/sciadv.aaz3152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
In mammals, a C2H2 zinc finger (C2H2) protein, CTCF, acts as the master regulator of chromosomal architecture and of the expression of Hox gene clusters. Like mammalian CTCF, the Drosophila homolog, dCTCF, localizes to boundaries in the bithorax complex (BX-C). Here, we have determined the minimal requirements for the assembly of a functional boundary by dCTCF and two other C2H2 zinc finger proteins, Pita and Su(Hw). Although binding sites for these proteins are essential for the insulator activity of BX-C boundaries, these binding sites alone are insufficient to create a functional boundary. dCTCF cannot effectively bind to a single recognition sequence in chromatin or generate a functional insulator without the help of additional proteins. In addition, for boundary elements in BX-C at least four binding sites for dCTCF or the presence of additional DNA binding factors is required to generate a functional insulator.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Maria Lukyanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
24
|
The Role of Insulation in Patterning Gene Expression. Genes (Basel) 2019; 10:genes10100767. [PMID: 31569427 PMCID: PMC6827083 DOI: 10.3390/genes10100767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Development is orchestrated by regulatory elements that turn genes ON or OFF in precise spatial and temporal patterns. Many safety mechanisms prevent inappropriate action of a regulatory element on the wrong gene promoter. In flies and mammals, dedicated DNA elements (insulators) recruit protein factors (insulator binding proteins, or IBPs) to shield promoters from regulatory elements. In mammals, a single IBP called CCCTC-binding factor (CTCF) is known, whereas genetic and biochemical analyses in Drosophila have identified a larger repertoire of IBPs. How insulators function at the molecular level is not fully understood, but it is currently thought that they fold chromosomes into conformations that affect regulatory element-promoter communication. Here, we review the discovery of insulators and describe their properties. We discuss recent genetic studies in flies and mice to address the question: Is gene insulation important for animal development? Comparing and contrasting observations in these two species reveal that they have different requirements for insulation, but that insulation is a conserved and critical gene regulation strategy.
Collapse
|
25
|
Complete reconstitution of bypass and blocking functions in a minimal artificial Fab-7 insulator from Drosophila bithorax complex. Proc Natl Acad Sci U S A 2019; 116:13462-13467. [PMID: 31209019 DOI: 10.1073/pnas.1907190116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Boundaries in the bithorax complex (BX-C) delimit autonomous regulatory domains that drive parasegment-specific expression of the Hox genes Ubx, abd-A, and Abd-B The Fab-7 boundary is located between the iab-6 and iab-7 domains and has two key functions: blocking cross-talk between these domains and at the same time promoting communication (boundary bypass) between iab-6 and the Abd-B promoter. Using a replacement strategy, we found that multimerized binding sites for the architectural proteins Pita, Su(Hw), and dCTCF function as conventional insulators and block cross-talk between the iab-6 and iab-7 domains; however, they lack bypass activity, and iab-6 is unable to regulate Abd-B Here we show that an ∼200-bp sequence of dHS1 from the Fab-7 boundary rescues the bypass defects of these multimerized binding sites. The dHS1 sequence is bound in embryos by a large multiprotein complex, Late Boundary Complex (LBC), that contains the zinc finger proteins CLAMP and GAF. Using deletions and mutations in critical GAGAG motifs, we show that bypass activity correlates with the efficiency of recruitment of LBC components CLAMP and GAF to the artificial boundary. These results indicate that LBC orchestrates long-distance communication between the iab-6 regulatory domain and the Abd-B gene, while the Pita, Su(Hw), and dCTCF proteins function to block local cross-talk between the neighboring regulatory domains iab-6 and iab-7.
Collapse
|
26
|
Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 2019; 568:49-54. [PMID: 30886393 PMCID: PMC6556380 DOI: 10.1038/s41586-019-1035-4] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
The establishment of cell types during development requires precise interactions between genes and distal regulatory sequences. We have a limited understanding of how these interactions look in three dimensions, vary across cell types in complex tissue, and relate to transcription. Here we describe optical reconstruction of chromatin architecture (ORCA), a method that can trace the DNA path in single cells with nanoscale accuracy and genomic resolution reaching two kilobases. We used ORCA to study a Hox gene cluster in cryosectioned Drosophila embryos and labelled around 30 RNA species in parallel. We identified cell-type-specific physical borders between active and Polycomb-repressed DNA, and unexpected Polycomb-independent borders. Deletion of Polycomb-independent borders led to ectopic enhancer-promoter contacts, aberrant gene expression, and developmental defects. Together, these results illustrate an approach for high-resolution, single-cell DNA domain analysis in vivo, identify domain structures that change with cell identity, and show that border elements contribute to the formation of physical domains in Drosophila.
Collapse
Affiliation(s)
- Leslie J Mateo
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Isaac S Cinquini
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Carly A Walker
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
27
|
Postika N, Metzler M, Affolter M, Müller M, Schedl P, Georgiev P, Kyrchanova O. Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex. PLoS Genet 2018; 14:e1007702. [PMID: 30540750 PMCID: PMC6306242 DOI: 10.1371/journal.pgen.1007702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
Drosophila bithorax complex (BX-C) is one of the best model systems for studying the role of boundaries (insulators) in gene regulation. Expression of three homeotic genes, Ubx, abd-A, and Abd-B, is orchestrated by nine parasegment-specific regulatory domains. These domains are flanked by boundary elements, which function to block crosstalk between adjacent domains, ensuring that they can act autonomously. Paradoxically, seven of the BX-C regulatory domains are separated from their gene target by at least one boundary, and must “jump over” the intervening boundaries. To understand the jumping mechanism, the Mcp boundary was replaced with Fab-7 and Fab-8. Mcp is located between the iab-4 and iab-5 domains, and defines the border between the set of regulatory domains controlling abd-A and Abd-B. When Mcp is replaced by Fab-7 or Fab-8, they direct the iab-4 domain (which regulates abd-A) to inappropriately activate Abd-B in abdominal segment A4. For the Fab-8 replacement, ectopic induction was only observed when it was inserted in the same orientation as the endogenous Fab-8 boundary. A similar orientation dependence for bypass activity was observed when Fab-7 was replaced by Fab-8. Thus, boundaries perform two opposite functions in the context of BX-C–they block crosstalk between neighboring regulatory domains, but at the same time actively facilitate long distance communication between the regulatory domains and their respective target genes. Drosophila bithorax complex (BX-C) is one of a few examples demonstrating in vivo role of boundary/insulator elements in organization of independent chromatin domains. BX-C contains three HOX genes, whose parasegment-specific pattern is controlled by cis-regulatory domains flanked by boundary/insulator elements. Since the boundaries ensure autonomy of adjacent domains, the presence of these elements poses a paradox: how do the domains bypass the intervening boundaries and contact their proper regulatory targets? According to the textbook model, BX-C regulatory domains are able to bypass boundaries because they harbor special promoter targeting sequences. However, contrary to this model, we show here that the boundaries themselves play an active role in directing regulatory domains to their appropriate HOX gene promoter.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| |
Collapse
|
28
|
Kyrchanova O, Zolotarev N, Mogila V, Maksimenko O, Schedl P, Georgiev P. Architectural protein Pita cooperates with dCTCF in organization of functional boundaries in Bithorax complex. Development 2017; 144:2663-2672. [PMID: 28619827 DOI: 10.1242/dev.149815] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
Boundaries in the Bithorax complex (BX-C) of Drosophila delimit autonomous regulatory domains that drive parasegment-specific expression of homeotic genes. BX-C boundaries have two crucial functions: they must block crosstalk between adjacent regulatory domains and at the same time facilitate boundary bypass. The C2H2 zinc-finger protein Pita binds to several BX-C boundaries, including Fab-7 and Mcp To study Pita functions, we have used a boundary replacement strategy by substituting modified DNAs for the Fab-7 boundary, which is located between the iab-6 and iab-7 regulatory domains. Multimerized Pita sites block iab-6↔iab-7 crosstalk but fail to support iab-6 regulation of Abd-B (bypass). In the case of Fab-7, we used a novel sensitized background to show that the two Pita-binding sites contribute to its boundary function. Although Mcp is from BX-C, it does not function appropriately when substituted for Fab-7: it blocks crosstalk but does not support bypass. Mutation of the Mcp Pita site disrupts blocking activity and also eliminates dCTCF binding. In contrast, mutation of the Mcp dCTCF site does not affect Pita binding, and this mutant boundary retains partial function.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nikolay Zolotarev
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladic Mogila
- Laboratory of Regulation of Gene Expression in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Regulation of Gene Expression in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia .,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
29
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
30
|
Fongang B, Kong F, Negi S, Braun W, Kudlicki A. A Conserved Structural Signature of the Homeobox Coding DNA in HOX genes. Sci Rep 2016; 6:35415. [PMID: 27739488 PMCID: PMC5064350 DOI: 10.1038/srep35415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
The homeobox encodes a DNA-binding domain found in transcription factors regulating key developmental processes. The most notable examples of homeobox containing genes are the Hox genes, arranged on chromosomes in the same order as their expression domains along the body axis. The mechanisms responsible for the synchronous regulation of Hox genes and the molecular function of their colinearity remain unknown. Here we report the discovery of a conserved structural signature of the 180-base pair DNA fragment comprising the homeobox. We demonstrate that the homeobox DNA has a characteristic 3-base-pair periodicity in the hydroxyl radical cleavage pattern. This periodic pattern is significant in most of the 39 mammalian Hox genes and in other homeobox-containing transcription factors. The signature is present in segmented bilaterian animals as evolutionarily distant as humans and flies. It remains conserved despite the fact that it would be disrupted by synonymous mutations, which raises the possibility of evolutionary selective pressure acting on the structure of the coding DNA. The homeobox coding DNA may therefore have a secondary function, possibly as a regulatory element. The existence of such element may have important consequences for understanding how these genes are regulated.
Collapse
Affiliation(s)
- Bernard Fongang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Fanping Kong
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Surendra Negi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Werner Braun
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
31
|
Kyrchanova O, Mogila V, Wolle D, Deshpande G, Parshikov A, Cléard F, Karch F, Schedl P, Georgiev P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 2016; 12:e1006188. [PMID: 27428541 PMCID: PMC4948906 DOI: 10.1371/journal.pgen.1006188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. Boundary elements in the Bithorax complex have two seemingly contradictory activities. They must block crosstalk between neighboring regulatory domains, but at the same time be permissive (insulator bypass) for regulatory interactions between the domains and the BX-C homeotic genes. We have used a replacement strategy to investigate how they carry out these two functions. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site is sufficient to fully rescue a Fab-7 boundary deletion. It blocks crosstalk and supports bypass. As has been observed in transgene assays, blocking activity requires the Fab-8 dCTCF sites, while full bypass activity requires the dCTCF sites plus a small part of PTS. In transgene assays, bypass activity typically depends on the orientation of the two insulators relative to each other. A similar orientation dependence is observed for the Fab-8 replacement in BX-C. When the orientation of the Fab-8 boundary is reversed, bypass activity is lost, while blocking is unaffected. Interestingly, unlike what has been observed in mammals, reversing the orientation of only the Fab-8 dCTCF sites does not affect boundary function. This finding indicates that other Fab-8 factors must play a critical role in determining orientation. Taken together, our findings argue that carrying out the paradoxical functions of the BX-C boundaries does not require any unusual or special properties; rather BX-C boundaries utilize generic blocking and insulator bypass activities that are appropriately adapted to their regulatory context. Thus making them a good model for studying the functional properties of boundaries/insulators in their native setting.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexander Parshikov
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Fabienne Cléard
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Francois Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Paul Schedl
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| |
Collapse
|
32
|
Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex. Genetics 2015; 202:601-17. [PMID: 26715665 DOI: 10.1534/genetics.115.179309] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.
Collapse
|
33
|
Kyrchanova O, Mogila V, Wolle D, Magbanua JP, White R, Georgiev P, Schedl P. The boundary paradox in the Bithorax complex. Mech Dev 2015; 138 Pt 2:122-132. [PMID: 26215349 PMCID: PMC4890074 DOI: 10.1016/j.mod.2015.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023]
Abstract
The parasegment-specific expression of the three Drosophila Bithorax complex homeotic genes is orchestrated by nine functionally autonomous regulatory domains. Functional autonomy depends upon special elements called boundaries or insulators that are located between each domain. The boundaries ensure the independent activity of each domain by blocking adventitious interactions with initiators, enhancers and silencers in the neighboring domains. However, this blocking activity poses a regulatory paradox--the Bithorax boundaries are also able to insulate promoters from regulatory interactions with enhancers and silencers and six of the nine Bithorax regulatory domains are separated from their target genes by at least one boundary element. Here we consider several mechanisms that have been suggested for how the Bithorax regulatory domains are able to bypass intervening boundary elements and direct the appropriate parasegment-specific temporal and spatial expression of their target gene.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Nikolaev V.A. Sukhomlinsky National University, Department of Biology, Ukraine
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
34
|
Maeda RK, Karch F. The open for business model of the bithorax complex in Drosophila. Chromosoma 2015; 124:293-307. [PMID: 26067031 PMCID: PMC4548009 DOI: 10.1007/s00412-015-0522-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023]
Abstract
After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of the functioning of the BX-C, in which the "segment-specific functions" appear as segment-specific enhancers regulating, Ubx, abd-A, or Abd-B (Peifer et al. 1987). Key to their model was that the segmental address of these enhancers was not an inherent ability of the enhancers themselves, but was determined by the chromosomal location in which they lay. In their view, the sequential activation of the segment-specific functions resulted from the sequential opening of chromatin domains along the chromosome as one moves from anterior to posterior. This model soon became known of as the open for business model. While the open for business model is quite easy to visualize at a conceptual level, molecular evidence to validate this model has been missing for almost 30 years. The recent publication describing the outstanding, joint effort from the Bender and Kingston laboratories now provides the missing proof to support this model (Bowman et al. 2014). The purpose of this article is to review the open for business model and take the reader through the genetic arguments that led to its elaboration.
Collapse
Affiliation(s)
- Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| |
Collapse
|
35
|
Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex. Mol Cell Biol 2015; 35:3739-52. [PMID: 26303531 DOI: 10.1128/mcb.00456-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022] Open
Abstract
Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C.
Collapse
|
36
|
Magbanua JP, Runneburger E, Russell S, White R. A variably occupied CTCF binding site in the ultrabithorax gene in the Drosophila bithorax complex. Mol Cell Biol 2015; 35:318-30. [PMID: 25368383 PMCID: PMC4295388 DOI: 10.1128/mcb.01061-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 10/25/2014] [Indexed: 11/20/2022] Open
Abstract
Although the majority of genomic binding sites for the insulator protein CCCTC-binding factor (CTCF) are constitutively occupied, a subset show variable occupancy. Such variable sites provide an opportunity to assess context-specific CTCF functions in gene regulation. Here, we have identified a variably occupied CTCF site in the Drosophila Ultrabithorax (Ubx) gene. This site is occupied in tissues where Ubx is active (third thoracic leg imaginal disc) but is not bound in tissues where the Ubx gene is repressed (first thoracic leg imaginal disc). Using chromatin conformation capture, we show that this site preferentially interacts with the Ubx promoter region in the active state. The site lies close to Ubx enhancer elements and is also close to the locations of several gypsy transposon insertions that disrupt Ubx expression, leading to the bx mutant phenotype. gypsy insertions carry the Su(Hw)-dependent gypsy insulator and were found to affect both CTCF binding at the variable site and the chromatin topology. This suggests that insertion of the gypsy insulator in this region interferes with CTCF function and supports a model for the normal function of the variable CTCF site as a chromatin loop facilitator, promoting interaction between Ubx enhancers and the Ubx transcription start site.
Collapse
Affiliation(s)
- Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Estelle Runneburger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Bowman SK, Deaton AM, Domingues H, Wang PI, Sadreyev RI, Kingston RE, Bender W. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex. eLife 2014; 3:e02833. [PMID: 25082344 PMCID: PMC4139060 DOI: 10.7554/elife.02833] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bithorax complex (BX-C) in Drosophila melanogaster is a cluster of homeotic genes that determine body segment identity. Expression of these genes is governed by cis-regulatory domains, one for each parasegment. Stable repression of these domains depends on Polycomb Group (PcG) functions, which include trimethylation of lysine 27 of histone H3 (H3K27me3). To search for parasegment-specific signatures that reflect PcG function, chromatin from single parasegments was isolated and profiled. The H3K27me3 profiles across the BX-C in successive parasegments showed a 'stairstep' pattern that revealed sharp boundaries of the BX-C regulatory domains. Acetylated H3K27 was broadly enriched across active domains, in a pattern complementary to H3K27me3. The CCCTC-binding protein (CTCF) bound the borders between H3K27 modification domains; it was retained even in parasegments where adjacent domains lack H3K27me3. These findings provide a molecular definition of the homeotic domains, and implicate precisely positioned H3K27 modifications as a central determinant of segment identity.
Collapse
Affiliation(s)
- Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Aimee M Deaton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Heber Domingues
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Peggy I Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Pathology, Harvard Medical School, Boston, United States
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
38
|
Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P. Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. Bioessays 2013; 36:163-72. [PMID: 24277632 DOI: 10.1002/bies.201300125] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulators play a central role in subdividing the chromosome into a series of discrete topologically independent domains and in ensuring that enhancers and silencers contact their appropriate target genes. In this review we first discuss the general characteristics of insulator elements and their associated protein factors. A growing collection of insulator proteins have been identified including a family of proteins whose expression is developmentally regulated. We next consider several unexpected discoveries that require us to completely rethink how insulators function (and how they can best be assayed). These discoveries also require a reevaluation of how insulators might restrict or orchestrate (by preventing or promoting) interactions between regulatory elements and their target genes. We conclude by connecting these new insights into the mechanisms of insulator action to dynamic changes in the three-dimensional topology of the chromatin fiber and the generation of specific patterns of gene activity during development and differentiation.
Collapse
Affiliation(s)
- Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
39
|
Abstract
RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function.
Collapse
|