1
|
Blumenstiel JP, Kingan SB, Garrigan D, Hill T, Vedanayagam J. Nested likelihood-ratio testing of the nonsynonymous:synonymous ratio suggests greater adaptation in the piRNA machinery of Drosophila melanogaster compared with Drosophila ananassae and Drosophila willistoni, two species with higher repeat content. G3 (BETHESDA, MD.) 2025; 15:jkaf017. [PMID: 39982380 PMCID: PMC12005163 DOI: 10.1093/g3journal/jkaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025]
Abstract
Numerous studies have revealed a signature of strong adaptive evolution in the piwi-interacting RNA (piRNA) machinery of Drosophila melanogaster, but the cause of this pattern is not understood. Several hypotheses have been proposed. One hypothesis is that transposable element (TE) families and the piRNA machinery are co-evolving under an evolutionary arms race, perhaps due to antagonism by TEs against the piRNA machinery. A related, though not co-evolutionary, hypothesis is that recurrent TE invasion drives the piRNA machinery to adapt to novel TE strategies. A third hypothesis is that ongoing fluctuation in TE abundance leads to adaptation in the piRNA machinery that must constantly adjust between sensitivity for detecting new elements and specificity to avoid the cost of off-target gene silencing. Rapid evolution of the piRNA machinery may also be driven independently of TEs, and instead from other functions such as the role of piRNAs in suppressing sex-chromosome meiotic drive. We sought to evaluate the impact of TE abundance on adaptive evolution of the piRNA machinery in D. melanogaster and 2 species with higher repeat content-Drosophila ananassae and Drosophila willistoni. This comparison was achieved by employing a likelihood-based hypothesis testing framework based on the McDonald-Kreitman test. We show that we can reject a faster rate of adaptive evolution in the piRNA machinery of these 2 species. We propose that the high rate of adaptation in D. melanogaster is either driven by a recent influx of TEs that have occurred during range expansion or selection on other functions of the piRNA machinery.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Sarah B Kingan
- Pacific Biosciences, Long Read DNA Applications, 1305 O’Brien Drive, Menlo Park, CA 94025, USA
| | | | - Tom Hill
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
- Axle Informatics, 6116 Executive Blvd, Suite 400, Bethesda, MD 20852, USA
| | - Jeffrey Vedanayagam
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Du L, Chen W, Zhang D, Cui Y, He Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol Life Sci 2024; 81:379. [PMID: 39222270 PMCID: PMC11369131 DOI: 10.1007/s00018-024-05399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.
Collapse
Affiliation(s)
- Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Dong Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Courret C, Wei X, Larracuente AM. New perspectives on the causes and consequences of male meiotic drive. Curr Opin Genet Dev 2023; 83:102111. [PMID: 37704518 PMCID: PMC10842977 DOI: 10.1016/j.gde.2023.102111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Gametogenesis is vulnerable to selfish genetic elements that bias their transmission to the next generation by cheating meiosis. These so-called meiotic drivers are widespread in plants, animals, and fungi and can impact genome evolution. Here, we summarize recent progress on the causes and consequences of meiotic drive in males, where selfish elements attack vulnerabilities in spermatogenesis. Advances in genomics provide new insights into the organization and dynamics of driving chromosomes in natural populations. Common themes, including small RNAs, gene duplications, and heterochromatin, emerged from these studies. Interdisciplinary approaches combining evolutionary genomics with molecular and cell biology are beginning to unravel the mysteries of drive and suppression mechanisms. These approaches also provide insights into fundamental processes in spermatogenesis and chromatin regulation.
Collapse
Affiliation(s)
- Cécile Courret
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@CecileCourret
| | - Xiaolu Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA. https://twitter.com/@xiaolu_wei
| | | |
Collapse
|
4
|
Reinhardt JA, Baker RH, Zimin AV, Ladias C, Paczolt KA, Werren JH, Hayashi CY, Wilkinson GS. Impacts of Sex Ratio Meiotic Drive on Genome Structure and Function in a Stalk-Eyed Fly. Genome Biol Evol 2023; 15:evad118. [PMID: 37364298 PMCID: PMC10319772 DOI: 10.1093/gbe/evad118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Stalk-eyed flies in the genus Teleopsis carry selfish genetic elements that induce sex ratio (SR) meiotic drive and impact the fitness of male and female carriers. Here, we assemble and describe a chromosome-level genome assembly of the stalk-eyed fly, Teleopsis dalmanni, to elucidate patterns of divergence associated with SR. The genome contains tens of thousands of transposable element (TE) insertions and hundreds of transcriptionally and insertionally active TE families. By resequencing pools of SR and ST males using short and long reads, we find widespread differentiation and divergence between XSR and XST associated with multiple nested inversions involving most of the SR haplotype. Examination of genomic coverage and gene expression data revealed seven X-linked genes with elevated expression and coverage in SR males. The most extreme and likely drive candidate involves an XSR-specific expansion of an array of partial copies of JASPer, a gene necessary for maintenance of euchromatin and associated with regulation of TE expression. In addition, we find evidence for rapid protein evolution between XSR and XST for testis expressed and novel genes, that is, either recent duplicates or lacking a Dipteran ortholog, including an X-linked duplicate of maelstrom, which is also involved in TE silencing. Overall, the evidence suggests that this ancient XSR polymorphism has had a variety of impacts on repetitive DNA and its regulation in this species.
Collapse
Affiliation(s)
| | - Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chloe Ladias
- Biology Department, State University of New York at Geneseo, Geneseo, New York, USA
| | - Kimberly A Paczolt
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Cheryl Y Hayashi
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Mirsalehi A, Markova DN, Eslamieh M, Betrán E. Nuclear transport genes recurrently duplicate by means of RNA intermediates in Drosophila but not in other insects. BMC Genomics 2021; 22:876. [PMID: 34863092 PMCID: PMC8645118 DOI: 10.1186/s12864-021-08170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background The nuclear transport machinery is involved in a well-known male meiotic drive system in Drosophila. Fast gene evolution and gene duplications have been major underlying mechanisms in the evolution of meiotic drive systems, and this might include some nuclear transport genes in Drosophila. So, using a comprehensive, detailed phylogenomic study, we examined 51 insect genomes for the duplication of the same nuclear transport genes. Results We find that most of the nuclear transport duplications in Drosophila are of a few classes of nuclear transport genes, RNA mediated and fast evolving. We also retrieve many pseudogenes for the Ran gene. Some of the duplicates are relatively young and likely contributing to the turnover expected for genes under strong but changing selective pressures. These duplications are potentially revealing what features of nuclear transport are under selection. Unlike in flies, we find only a few duplications when we study the Drosophila duplicated nuclear transport genes in dipteran species outside of Drosophila, and none in other insects. Conclusions These findings strengthen the hypothesis that nuclear transport gene duplicates in Drosophila evolve either as drivers or suppressors of meiotic drive systems or as other male-specific adaptations circumscribed to flies and involving a handful of nuclear transport functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08170-4.
Collapse
Affiliation(s)
- Ayda Mirsalehi
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA
| | - Dragomira N Markova
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA
| | - Mohammadmehdi Eslamieh
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA.
| |
Collapse
|
6
|
Wei X, Eickbush DG, Speece I, Larracuente AM. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021; 10:e62375. [PMID: 34259629 PMCID: PMC8321551 DOI: 10.7554/elife.62375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.
Collapse
Affiliation(s)
- Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical CenterRochesterUnited States
| | - Danna G Eickbush
- Department of Biology, University of RochesterRochesterUnited States
| | - Iain Speece
- Department of Biology, University of RochesterRochesterUnited States
| | | |
Collapse
|
7
|
Herbette M, Wei X, Chang CH, Larracuente AM, Loppin B, Dubruille R. Distinct spermiogenic phenotypes underlie sperm elimination in the Segregation Distorter meiotic drive system. PLoS Genet 2021; 17:e1009662. [PMID: 34228705 PMCID: PMC8284685 DOI: 10.1371/journal.pgen.1009662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.
Collapse
Affiliation(s)
- Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Xiaolu Wei
- University of Rochester Medical Center, Department of Biomedical Genetics, Rochester, New York, United States of America
| | - Ching-Ho Chang
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Amanda M. Larracuente
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
8
|
Chen P, Kotov AA, Godneeva BK, Bazylev SS, Olenina LV, Aravin AA. piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in D. melanogaster male germline. Genes Dev 2021; 35:914-935. [PMID: 33985970 PMCID: PMC8168559 DOI: 10.1101/gad.345041.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Small noncoding piRNAs act as sequence-specific guides to repress complementary targets in Metazoa. Prior studies in Drosophila ovaries have demonstrated the function of the piRNA pathway in transposon silencing and therefore genome defense. However, the ability of the piRNA program to respond to different transposon landscapes and the role of piRNAs in regulating host gene expression remain poorly understood. Here, we comprehensively analyzed piRNA expression and defined the repertoire of their targets in Drosophila melanogaster testes. Comparison of piRNA programs between sexes revealed sexual dimorphism in piRNA programs that parallel sex-specific transposon expression. Using a novel bioinformatic pipeline, we identified new piRNA clusters and established complex satellites as dual-strand piRNA clusters. While sharing most piRNA clusters, the two sexes employ them differentially to combat the sex-specific transposon landscape. We found two piRNA clusters that produce piRNAs antisense to four host genes in testis, including CG12717/pirate, a SUMO protease gene. piRNAs encoded on the Y chromosome silence pirate, but not its paralog, to exert sex- and paralog-specific gene regulation. Interestingly, pirate is targeted by endogenous siRNAs in a sibling species, Drosophila mauritiana, suggesting distinct but related silencing strategies invented in recent evolution to regulate a conserved protein-coding gene.
Collapse
Affiliation(s)
- Peiwei Chen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Baira K Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Sergei S Bazylev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Ludmila V Olenina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow 123182, Russia
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| |
Collapse
|
9
|
Mechanisms of meiotic drive in symmetric and asymmetric meiosis. Cell Mol Life Sci 2021; 78:3205-3218. [PMID: 33449147 DOI: 10.1007/s00018-020-03735-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
Meiotic drive, the non-Mendelian transmission of chromosomes to the next generation, functions in asymmetric or symmetric meiosis across unicellular and multicellular organisms. In asymmetric meiosis, meiotic drivers act to alter a chromosome's spatial position in a single egg. In symmetric meiosis, meiotic drivers cause phenotypic differences between gametes with and without the driver. Here we discuss existing models of meiotic drive, highlighting the underlying mechanisms and regulation governing systems for which the most is known. We focus on outstanding questions surrounding these examples and speculate on how new meiotic drive systems evolve and how to detect them.
Collapse
|
10
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
11
|
Rieder LE, Jordan WT, Larschan EN. Targeting of the Dosage-Compensated Male X-Chromosome during Early Drosophila Development. Cell Rep 2020; 29:4268-4275.e2. [PMID: 31875538 PMCID: PMC6952266 DOI: 10.1016/j.celrep.2019.11.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation, which corrects for the imbalance in X-linked gene expression between XX females and XY males, represents a model for how genes are targeted for coordinated regulation. However, the mechanism by which dosage compensation complexes identify the X chromosome during early development remains unknown because of the difficulty of sexing embryos before zygotic transcription using X- or Y-linked reporter transgenes. We used meiotic drive to sex Drosophila embryos before zygotic transcription and ChIP-seq to measure the dynamics of dosage compensation factor targeting. The Drosophila male-specific lethal dosage compensation complex (MSLc) requires the ubiquitous zinc-finger protein chromatin-linked adaptor for MSL proteins (CLAMP) to identify the X chromosome. We observe a multi-stage process in which MSLc first identifies CLAMP binding sites throughout the genome, followed by concentration at the strongest X-linked MSLc sites. We provide insight into the dynamics of binding site recognition by a large transcription complex during early development. Rieder et al. establish a meiotic drive system to study Drosophila X chromosome dosage compensation before the maternal-zygotic transition. This study uncovers another step in the process during which the dosage compensation complex identifies binding sites genome-wide before becoming enriched on the X chromosome.
Collapse
Affiliation(s)
| | - William Thomas Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Erica Nicole Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
12
|
Bachtrog D. The Y Chromosome as a Battleground for Intragenomic Conflict. Trends Genet 2020; 36:510-522. [PMID: 32448494 DOI: 10.1016/j.tig.2020.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Y chromosomes are typically viewed as genetic wastelands with few intact genes. Recent genomic analyses in Drosophila, however, show that gene gain is prominent on young Y chromosomes. Meiosis- and RNAi-related genes often coamplify on recently formed X and Y chromosomes, are testis-expressed, and produce antisense transcripts and short RNAs. RNAi pathways are also involved in suppressing sex ratio drive in Drosophila. These observations paint a dynamic picture of sex chromosome differentiation, suggesting that rapidly evolving genomic battles over segregation are rampant on young sex chromosomes and utilize RNAi to defend the genome against selfish elements that manipulate fair meiosis. Recurrent sex chromosome drive can have profound ecological, evolutionary, and cellular impacts and account for unique features of sex chromosomes.
Collapse
Affiliation(s)
- Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 2019; 286:20191430. [PMID: 31640520 DOI: 10.1098/rspb.2019.1430] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.
Collapse
Affiliation(s)
- Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkley, CA, USA
| | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | | |
Collapse
|
15
|
Crysnanto D, Obbard DJ. Widespread gene duplication and adaptive evolution in the RNA interference pathways of the Drosophila obscura group. BMC Evol Biol 2019; 19:99. [PMID: 31068148 PMCID: PMC6505081 DOI: 10.1186/s12862-019-1425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) related pathways provide defense against viruses and transposable elements, and have been implicated in the suppression of meiotic drive elements. Genes in these pathways often exhibit high levels of adaptive substitution, and over longer timescales show gene duplication and loss-most likely as a consequence of their role in mediating conflict with these parasites. This is particularly striking for Argonaute 2 (Ago2), which is ancestrally the key effector of antiviral RNAi in insects, but has repeatedly formed new testis-specific duplicates in the recent history of the obscura species-group of Drosophila. RESULTS Here we take advantage of publicly available genomic and transcriptomic data to identify six further RNAi-pathway genes that have duplicated in this clade of Drosophila, and examine their evolutionary history. As seen for Ago2, we observe high levels of adaptive amino-acid substitution and changes in sex-biased expression in many of the paralogs. However, our phylogenetic analysis suggests that co-duplications of the RNAi machinery were not synchronous, and our expression analysis fails to identify consistent male-specific expression. CONCLUSIONS These results confirm that RNAi genes, including genes of the antiviral and piRNA pathways, have undergone multiple independent duplications and that their history has been particularly labile within the obscura group. However, they also suggest that the selective pressures driving these changes have not been consistent, implying that more than one selective agent may be responsible.
Collapse
Affiliation(s)
- Danang Crysnanto
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, UK
- Animal Genomics, ETH Zurich, Zurich, Switzerland
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, UK
- Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
17
|
Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components. Genetics 2016; 205:707-723. [PMID: 27974499 DOI: 10.1534/genetics.116.190850] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/13/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies.
Collapse
|
18
|
Lewis SH, Webster CL, Salmela H, Obbard DJ. Repeated Duplication of Argonaute2 Is Associated with Strong Selection and Testis Specialization in Drosophila. Genetics 2016; 204:757-769. [PMID: 27535930 PMCID: PMC5068860 DOI: 10.1534/genetics.116.192336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Argonaute2 (Ago2) is a rapidly evolving nuclease in the Drosophila melanogaster RNA interference (RNAi) pathway that targets viruses and transposable elements in somatic tissues. Here we reconstruct the history of Ago2 duplications across the D. obscura group and use patterns of gene expression to infer new functional specialization. We show that some duplications are old, shared by the entire species group, and that losses may be common, including previously undetected losses in the lineage leading to D. pseudoobscura We find that while the original (syntenic) gene copy has generally retained the ancestral ubiquitous expression pattern, most of the novel Ago2 paralogs have independently specialized to testis-specific expression. Using population genetic analyses, we show that most testis-specific paralogs have significantly lower genetic diversity than the genome-wide average. This suggests recent positive selection in three different species, and model-based analyses provide strong evidence of recent hard selective sweeps in or near four of the six D. pseudoobscura Ago2 paralogs. We speculate that the repeated evolution of testis specificity in obscura group Ago2 genes, combined with their dynamic turnover and strong signatures of adaptive evolution, may be associated with highly derived roles in the suppression of transposable elements or meiotic drive. Our study highlights the lability of RNAi pathways, even within well-studied groups such as Drosophila, and suggests that strong selection may act quickly after duplication in RNAi pathways, potentially giving rise to new and unknown RNAi functions in nonmodel species.
Collapse
Affiliation(s)
- Samuel H Lewis
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Claire L Webster
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Finland
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| |
Collapse
|
19
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
20
|
Ducret V, Gaigher A, Simon C, Goudet J, Roulin A. Sex-specific allelic transmission bias suggests sexual conflict at MC1R. Mol Ecol 2016; 25:4551-63. [PMID: 27480981 DOI: 10.1111/mec.13781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.
Collapse
Affiliation(s)
- Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland.
| | - Arnaud Gaigher
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
21
|
Abstract
Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species.
Collapse
Affiliation(s)
- Quentin Helleu
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, France and Université Paris-Sud, Orsay, France
| | - Pierre R Gérard
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, France and Université Paris-Sud, Orsay, France
| | - Catherine Montchamp-Moreau
- Laboratoire Évolution Génomes et Spéciation, CNRS UPR9034, Gif-sur-Yvette, France and Université Paris-Sud, Orsay, France
| |
Collapse
|
22
|
Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Evol Biol 2014; 14:233. [PMID: 25424548 PMCID: PMC4280042 DOI: 10.1186/s12862-014-0233-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/05/2014] [Indexed: 01/29/2023] Open
Abstract
Background Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)— an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. Results I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. Conclusions The genomic organization of the Rsp repeat in the D. melanogaster genome is complex—it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years). Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0233-9) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Olovnikov IA, Kalmykova AI. piRNA clusters as a main source of small RNAs in the animal germline. BIOCHEMISTRY (MOSCOW) 2014; 78:572-84. [PMID: 23980884 DOI: 10.1134/s0006297913060035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.
Collapse
Affiliation(s)
- I A Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | | |
Collapse
|