1
|
Olasege BS, Oh ZY, Tahir MS, Porto-Neto LR, Hayes BJ, Fortes MRS. Genomic regions and biological pathways associated with sex-limited reproductive traits in bovine species. J Anim Sci 2024; 102:skae085. [PMID: 38545844 PMCID: PMC11135212 DOI: 10.1093/jas/skae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Many animal species exhibit sex-limited traits, where certain phenotypes are exclusively expressed in one sex. Yet, the genomic regions that contribute to these sex-limited traits in males and females remain a subject of debate. Reproductive traits are ideal phenotypes to study sexual differences since they are mostly expressed in a sex-limited way. Therefore, this study aims to use local correlation analyses to identify genomic regions and biological pathways significantly associated with male and female sex-limited traits in two distinct cattle breeds (Brahman [BB] and Tropical Composite [TC]). We used the Correlation Scan method to perform local correlation analysis on 42 trait pairs consisting of six female and seven male reproductive traits recorded on ~1,000 animals for each sex in each breed. To pinpoint a specific region associated with these sex-limited reproductive traits, we investigated the genomic region(s) consistently identified as significant across the 42 trait pairs in each breed. The genes found in the identified regions were subjected to Quantitative Trait Loci (QTL) colocalization, QTL enrichment analyses, and functional analyses to gain biological insight into sexual differences. We found that the genomic regions associated with the sex-limited reproductive phenotypes are widely distributed across all the chromosomes. However, no single region across the genome was associated with all the 42 reproductive trait pairs in the two breeds. Nevertheless, we found a region on the X-chromosome to be most significant for 80% to 90% (BB: 33 and TC: 38) of the total 42 trait pairs. A considerable number of the genes in this region were regulatory genes. By considering only genomic regions that were significant for at least 50% of the 42 trait pairs, we observed more regions spread across the autosomes and the X-chromosome. All genomic regions identified were highly enriched for trait-specific QTL linked to sex-limited traits (percentage of normal sperm, metabolic weight, average daily gain, carcass weight, age at puberty, etc.). The gene list created from these identified regions was enriched for biological pathways that contribute to the observed differences between sexes. Our results demonstrate that genomic regions associated with male and female sex-limited reproductive traits are distributed across the genome. Yet, chromosome X seems to exert a relatively larger effect on the phenotypic variation observed between the sexes.
Collapse
Affiliation(s)
- Babatunde S Olasege
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- Ag and Food, CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | - Zhen Yin Oh
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Muhammad S Tahir
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- Ag and Food, CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | | | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Wanjari UR, Gopalakrishnan AV. A review on immunological aspects in male reproduction: An immune cells and cytokines. J Reprod Immunol 2023; 158:103984. [PMID: 37390629 DOI: 10.1016/j.jri.2023.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
The male reproductive system, particularly the male gamete, offers a unique barrier to the immune system. The growing germ cells in the testis need to be shielded from autoimmune damage. Hence the testis has to establish and sustain an immune-privileged milieu. Sertoli cells create this safe space, protected by the blood-testis barrier. Cytokines are a type of immune reaction that can positively and negatively affect male reproductive health. Inflammation, disease, and obesity are just a few physiological conditions for which cytokines mediate signals. They interact with steroidogenesis, shaping the adrenals and testes to produce the hormones needed for survival. In particular pathological condition, including autoimmune disorders, contains high levels of the same cytokines in semen that play an essential role in the immunomodulation of the male gonad. This review focuses on understanding the immunological role of cytokines in the control and development of male reproduction. Also, in maintaining male reproductive health and diseases linked with their aberrant function in the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Zhou T, Zhang H, Chen M, Zhang Y, Chen G, Zou G, Liang H. Identification and Expression Analysis of Wnt2 Gene in the Sex Differentiation of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010188. [PMID: 36676139 PMCID: PMC9864750 DOI: 10.3390/life13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture animal in China. The Wnt gene family plays important regulatory roles in the development and growth of mammals. However, the precise function of these family genes has not been well understood in the sex differentiation of Chinese soft-shelled turtles. Here, we cloned a member of the Wnt family, Wnt2, which obtained a 1077 bp open reading frame that encoded a 358-aa protein. The putative amino acid sequences of proteins are exceeded 80% identical to other turtles. The expression level of Wnt2 peaked at the 14th stage both in female and male embryos during the early gonadal differentiation period of Chinese soft-shelled turtles, which occurred before gonadal differentiation. Wnt2 mRNA was expressed at higher levels in the brains and gonads of mature P. sinensis females compared with those in mature males. Wnt agonists significantly affected the expression level of Wnt2 during the gonadal differentiation period. After Wnt agonists (1.0 μg/μL, 2.5 μg/μL, 5.0 μg/μL) treatment, the expression level of the Wnt2 generally appeared to have an inverted-V trend over time in female embryonic gonads. The results suggested that Wnt2 may participate in the regulation of gonad development in P. sinensis during the early embryonic stages. These results could provide a theoretical basis for the reproduction process of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yingping Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
4
|
Li AM, He WZ, Wei JL, Chen ZL, Liao F, Qin CX, Pan YQ, Shang XK, Lakshmanan P, Wang M, Tan HW, Huang DL. Transcriptome Profiling Reveals Genes Related to Sex Determination and Differentiation in Sugarcane Borer (Chilo sacchariphagus Bojer). INSECTS 2022; 13:insects13060500. [PMID: 35735837 PMCID: PMC9225334 DOI: 10.3390/insects13060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Chilo sacchariphagus Bojer is an important sugarcane pest globally. The identification of key genes associated with sex determination and differentiation will provide important basic information for the sterile insect technique control strategy. In this study, the comparative transcriptomic analysis of female and male adults revealed sex-biased gene expression, indicating putative genetic elements of sex determination and differentiation in this species. Abstract Chilo sacchariphagus Bojer is an important sugarcane pest globally. Along with genetic modification strategies, the sterile insect technique (SIT) has gained more attention as an environment-friendly method for pest control. The identification of key genes associated with sex determination and differentiation will provide important basic information for this control strategy. As such, the transcriptome sequencing of female and male adults was conducted in order to understand the sex-biased gene expression and molecular basis of sex determination and differentiation in this species. A total of 60,429 unigenes were obtained; among them, 34,847 genes were annotated. Furthermore, 11,121 deferentially expressed genes (DEGs) were identified, of which 8986 were male-biased and 2135 were female-biased genes. The male-biased genes were enriched for carbon metabolism, peptidase activity and transmembrane transport, while the female-biased genes were enriched for the cell cycle, DNA replication, and the MAPK signaling pathway. In addition, 102 genes related to sex-determination and differentiation were identified, including the protein toll, ejaculatory bulb-specific protein, fruitless, transformer-2, sex-lethal, beta-Catenin, sox, gata4, beta-tubulin, cytosol aminopeptidase, seminal fluid, and wnt4. Furthermore, transcription factors such as myb, bhlh and homeobox were also found to be potentially related to sex determination and differentiation in this species. Our data provide new insights into the genetic elements associated with sex determination and differentiation in Chilo sacchariphagus, and identified potential candidate genes to develop pest-control strategies.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei-Zhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ji-Li Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xian-Kun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hong-Wei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (H.-W.T.); (D.-L.H.)
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (H.-W.T.); (D.-L.H.)
| |
Collapse
|
5
|
Chen J, Zhang P, Chen H, Wang X, He X, Zhong J, Zheng H, Li X, Jakovlić I, Zhang Y, Chen Y, Shen B, Deng C, Wu Y. Whole-genome sequencing identifies rare missense variants of WNT16 and ERVW-1 causing the systemic lupus erythematosus. Genomics 2022; 114:110332. [PMID: 35283196 DOI: 10.1016/j.ygeno.2022.110332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
Systemic lupus erythematosus (SLE, OMIM 152700) is a rare autoimmune disease with high heritability that affects ~0.1% of the population. Previous studies have revealed several common variants with small effects in European and East Asian SLE patients. However, there is still no rare variant study on Chinese SLE patients using the whole-genome sequencing technology (WGS). Here, we designed a family based WGS study to identify novel rare variants with large effects. Based on large-scale allele frequency data from the gnomAD database, we identified rare protein-coding gene variants with disruptive and sequence-altering impacts in SLE patients. We found that the burden of rare variants was significantly higher than that of common variants in patients, suggesting a larger effect of rare variants on the SLE pathogenesis. We identified the pathogenic risk of rare missense variants with significant odds ratios (p < 0.05) in two genes, including WNT16 (NC_000007.14:g.121329757G > C, NP_057171.2:p.(Ala86Pro) and 7 g.121329760G > C, NP_057171.2:p.(Ala87Pro)), which explains five out of seven patients covering all three families but are absent from all controls, and ERVW-1 (NC_000007.14:g.92469882A > G, NP_001124397.1:p.(Leu167Pro), rs74545114; NC_000007.14:g.92469907G > A, NP_001124397.1:p.(Arg159Cys), rs201142302; NC_000007.14:g.92469919G > A, NP_001124397.1:p.(His155Tyr), rs199552228), which explains the other two patients. None of these variants were identified in any of the controls. These associations are supported by known gene expression studies in SLE patients based on literature review. We further tested the wild and mutant types using the luciferase assays and qPCR in cells. We found that WNT16 can activate the canonical Wnt/β-catenin pathway while the mutant cannot. Additionally, the wild ERVW-1 expression can be significantly up-regulated by cAMP while the mutant cannot. Our study provides the first direct genetic and in vitro evidence for the pathogenic risk of mutant WNT16 and ERVW-1, which may facilitate the design of precision therapy for SLE.
Collapse
Affiliation(s)
- Jianhai Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haidi Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - HuaPing Zheng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | - Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Wang YY, Duan SH, Wang GL, Li JL. Integrated mRNA and miRNA expression profile analysis of female and male gonads in Hyriopsis cumingii. Sci Rep 2021; 11:665. [PMID: 33436779 PMCID: PMC7804246 DOI: 10.1038/s41598-020-80264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Hyriopsis cumingii is an important species for freshwater pearl cultivation in China. In terms of pearl production, males have larger pearls and better glossiness than females, but there are few reports focusing on the sex of H. cumingii. In this study, six mRNA and six microRNA (miRNA) libraries were prepared from ovaries and testes. Additionally, 28,502 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Compared with testis, 14,360 mRNAs and 20 miRNAs were up-regulated in ovary, 14,142 mRNAs and 12 miRNAs were down-regulated. In DEGs, the known genes related to sex determinism and/or differentiation were also identified, such as DMRT1, SOX9, SF1 for males, FOXL2 for females, and other potentially significant candidate genes. Three sex-related pathways have also been identified, which are Wnt, Notch, and TGF-beta. In 32 DEMs, the three miRNAs (miR-9-5p, miR-92, miR-184) were paid more attention, they predicted 28 target genes, which may also be candidates for sex-related miRNAs and genes. Differential miRNAs target genes analysis reveals the pathway associated with oocyte meiosis and spermatogenesis. Overall, the findings of the study provide significant insights to enhance our understanding of sex differentiation and/or sex determination mechanisms for H. cumingii.
Collapse
Affiliation(s)
- Ya-Yu Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Sheng-Hua Duan
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Gui-Ling Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Jia-Le Li
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| |
Collapse
|
8
|
Lu T, Mar JC. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types. Biol Sex Differ 2020; 11:61. [PMID: 33153500 PMCID: PMC7643324 DOI: 10.1186/s13293-020-00335-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND It is a long established fact that sex is an important factor that influences the transcriptional regulatory processes of an organism. However, understanding sex-based differences in gene expression has been limited because existing studies typically sequence and analyze bulk tissue from female or male individuals. Such analyses average cell-specific gene expression levels where cell-to-cell variation can easily be concealed. We therefore sought to utilize data generated by the rapidly developing single cell RNA sequencing (scRNA-seq) technology to explore sex dimorphism and its functional consequences at the single cell level. METHODS Our study included scRNA-seq data of ten well-defined cell types from the brain and heart of female and male young adult mice in the publicly available tissue atlas dataset, Tabula Muris. We combined standard differential expression analysis with the identification of differential distributions in single cell transcriptomes to test for sex-based gene expression differences in each cell type. The marker genes that had sex-specific inter-cellular changes in gene expression formed the basis for further characterization of the cellular functions that were differentially regulated between the female and male cells. We also inferred activities of transcription factor-driven gene regulatory networks by leveraging knowledge of multidimensional protein-to-genome and protein-to-protein interactions and analyzed pathways that were potential modulators of sex differentiation and dimorphism. RESULTS For each cell type in this study, we identified marker genes with significantly different mean expression levels or inter-cellular distribution characteristics between female and male cells. These marker genes were enriched in pathways that were closely related to the biological functions of each cell type. We also identified sub-cell types that possibly carry out distinct biological functions that displayed discrepancies between female and male cells. Additionally, we found that while genes under differential transcriptional regulation exhibited strong cell type specificity, six core transcription factor families responsible for most sex-dimorphic transcriptional regulation activities were conserved across the cell types, including ASCL2, EGR, GABPA, KLF/SP, RXRα, and ZF. CONCLUSIONS We explored novel gene expression-based biomarkers, functional cell group compositions, and transcriptional regulatory networks associated with sex dimorphism with a novel computational pipeline. Our findings indicated that sex dimorphism might be widespread across the transcriptomes of cell types, cell type-specific, and impactful for regulating cellular activities.
Collapse
Affiliation(s)
- Tianyuan Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,Quantitative Life Sciences Program, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Fenner J, Benson C, Rodriguez-Caro L, Ren A, Papa R, Martin A, Hoffmann F, Range R, Counterman BA. Wnt Genes in Wing Pattern Development of Coliadinae Butterflies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Ma X, Cen S, Wang L, Zhang C, Wu L, Tian X, Wu Q, Li X, Wang X. Genome-wide identification and comparison of differentially expressed profiles of miRNAs and lncRNAs with associated ceRNA networks in the gonads of Chinese soft-shelled turtle, Pelodiscus sinensis. BMC Genomics 2020; 21:443. [PMID: 32600250 PMCID: PMC7322844 DOI: 10.1186/s12864-020-06826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of Pelodiscus sinensis. Results We identified 10,446 mature miRNAs, 20,414 mRNAs and 28,500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11,319 mRNAs, and 10,495 lncRNAs showed differential expression. A total of 2814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis-specific, and 186 DEmiRNAs and 4491 DElncRNAs were ovary-specific. We further constructed complete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1. Conclusions In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.
Collapse
Affiliation(s)
- Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shuangshuang Cen
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Luming Wang
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen, Fujian, 361000, People's Republic of China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Xiaoqing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| |
Collapse
|
11
|
Cai J, Li L, Song L, Xie L, Luo F, Sun S, Chakraborty T, Zhou L, Wang D. Effects of long term antiprogestine mifepristone (RU486) exposure on sexually dimorphic lncRNA expression and gonadal masculinization in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105289. [PMID: 31491707 DOI: 10.1016/j.aquatox.2019.105289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Mifepristone (RU486), a clinical abortion agent and potential endocrine disruptor, binds to progestin and glucocorticoid receptors and has multiple functional importance in reproductive physiology. A long-term exposure of RU486 resulted in masculinization of female fish, however, the epigenetic landscape remains elusive. Recent studies demonstrated that long non-coding RNAs (lncRNAs) might play potential roles in epigenetic modulation of sex differentiation, ovarian cancer and germline stem cell survival. To further understand the influence of RU486 exposure on epigenetic regulation, we performed a comparative investigation on sex-biased gonadal lncRNAs profiles using control XX/XY and RU486-induced sex reversed XX Nile tilapia (Oreochromis niloticus) by RNA-seq. In total, 962 sexually differentially expressed lncRNAs and their target genes were screened from the gonads of control and sex reversed fish. In comparison with the control XX group, sex reversal induced by RU486 treatment led to significant up-regulation of 757 lncRNAs and down-regulation of 221 lncRNAs. Hierarchical clustering analysis revealed that global lncRNA expression profiles in RU486-treated XX group clustered into the same branch with the control XY, whereas XX control group formed a separate branch. The KEGG pathway enrichment analysis showed that the cis-target genes between RU486-XX and control-XX were concentrated in NOD - like receptor signaling pathway, Cell adhesion molecules (CAMs) and Biosynthesis of amino acids. Real-time PCR and in situ hybridization experiments demonstrate that lncRNAs showing intense fluctuation during RU486 treatment are also sexually dimorphic during early sex differentiation, which further proves the intimate relationship between lncRNAs and sex differentiation and sexual transdifferentiation. Taken together, our data strongly indicates that a long-term exposure of RU486 resulted in sex reversal of XX female fish and the altered expression of sexually dimorphic lncRNAs might partially account for the sex reversal via epigenetic modification.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; High School of Tongnan, Tongnan, Chongqing, 402660, China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lang Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; Experimental High School of Fuling, Chongqing, 400800, China
| | - Shaohua Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tapas Chakraborty
- South Ehime Fisheries Research Center, Ehime University, 798-4206, Japan.
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Wang Z, Qiu X, Kong D, Zhou X, Guo Z, Gao C, Ma S, Hao W, Jiang Z, Liu S, Zhang T, Meng X, Wang X. Comparative RNA-Seq analysis of differentially expressed genes in the testis and ovary of Takifugu rubripes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:50-57. [PMID: 28189874 DOI: 10.1016/j.cbd.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Takifugu rubripes is a classical model organism for studying the role of gonad organogenesis in such physiological processes as fertilization, sex determination, and sexual development. To explicitly investigate the mechanism associated with gonad organogenesis in T. rubripes, we obtained 44.3 million and 55.2 million raw reads from the testis and ovary, respectively, by RNA-seq and from these, 18,523 genes were identified. A total of 680 differentially expressed genes were obtained from comparison transcriptome analysis between the testis and ovary, and of these, 556 genes were up-regulated in the testis, whereas only 124 genes were upregulated in the ovary. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that many of these genes encode proteins involved in signal transduction and gonad development. We mainly focused on the differentially expressed genes that have the potential to develop into the gonad. The generation of large scale transcriptomic data presented in this work would enrich the genetic resources of T. rubripes, which should be valuable to the comparative and evolutionary studies of teleosts.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Qiu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Derong Kong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxu Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Changfu Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shuai Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Weiwei Hao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhiqiang Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shengcong Liu
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Tao Zhang
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xuesong Meng
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
13
|
Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, Hedger MP, Schuppe HC. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front Endocrinol (Lausanne) 2017; 8:307. [PMID: 29250030 PMCID: PMC5715375 DOI: 10.3389/fendo.2017.00307] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed.
Collapse
Affiliation(s)
- Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| | - Britta Klein
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Dana Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sivanjah Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Mark P. Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Miao N, Wang X, Hou Y, Feng Y, Gong Y. Identification of male-biased microRNA-107 as a direct regulator for nuclear receptor subfamily 5 group A member 1 based on sexually dimorphic microRNA expression profiling from chicken embryonic gonads. Mol Cell Endocrinol 2016; 429:29-40. [PMID: 27036932 DOI: 10.1016/j.mce.2016.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/08/2016] [Accepted: 03/27/2016] [Indexed: 12/15/2022]
Abstract
Several studies indicate that sexual dimorphic microRNAs (miRNAs) in chicken gonads are likely to have important roles in sexual development, but a more global understanding of the roles of miRNAs in sexual differentiation is still needed. To this end, we performed miRNA expression profiling in chicken gonads at embryonic day 5.5 (E5.5). Among the sex-biased miRNAs validated by qRT-PCR, twelve male-biased and six female-biased miRNAs were consistent with the sequencing results. Bioinformatics analysis revealed that some sex-biased miRNAs were potentially involved in gonadal development. Further functional analysis found that over-expression of miR-107 directly inhibited nuclear receptor subfamily 5 group A member 1 (NR5a1), and its downstream cytochrome P450 family 19 subfamily A, polypeptide 1 (CYP19A1). However, anti-Mullerian hormone (AMH) was not directly or indirectly regulated by miR-107. Overall results indicate that miR-107 may specifically mediate avian ovary-development by post-transcriptional regulation of NR5a1 and CYP19A1 in estrogen signaling pathways.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|