1
|
Koganebuchi K, Matsunami M, Imamura M, Kawai Y, Hitomi Y, Tokunaga K, Maeda S, Ishida H, Kimura R. Demographic history of Ryukyu islanders at the southern part of the Japanese Archipelago inferred from whole-genome resequencing data. J Hum Genet 2023; 68:759-767. [PMID: 37468573 PMCID: PMC10597838 DOI: 10.1038/s10038-023-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023]
Abstract
The Ryukyu Islands are located in the southernmost part of the Japanese Archipelago and consist of several island groups. Each island group has its own history and culture, which differ from those of mainland Japan. People of the Ryukyu Islands are genetically subdivided; however, their detailed demographic history remains unclear. We report the results of a whole-genome sequencing analysis of a total of 50 Ryukyu islanders, focusing on genetic differentiation between Miyako and Okinawa islanders. We confirmed that Miyako and Okinawa islanders cluster differently in principal component analysis and ADMIXTURE analysis and that there is a population structure among Miyako islanders. The present study supports the hypothesis that population differentiation is primarily caused by genetic drift rather than by differences in the rate of migration from surrounding regions, such as the Japanese main islands or Taiwan. In addition, the genetic cline observed among Miyako and Okinawa islanders can be explained by recurrent migration beyond the bounds of these islands. Our analysis also suggested that the presence of multiple subpopulations during the Neolithic Ryukyu Jomon period is not crucial to explain the modern Ryukyu populations. However, the assumption of multiple subpopulations during the time of admixture with mainland Japanese is necessary to explain the modern Ryukyu populations. Our findings add insights that could help clarify the complex history of populations in the Ryukyu Islands.
Collapse
Affiliation(s)
- Kae Koganebuchi
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, 142-8501, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Mt. Olive Hospital, Naha, 903-0804, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
| |
Collapse
|
2
|
Giesen A, Blanckenhorn WU, Schäfer MA, Shimizu KK, Shimizu-Inatsugi R, Misof B, Podsiadlowski L, Niehuis O, Lischer HEL, Aeschbacher S, Kapun M. Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species. Evol Biol 2023; 50:395-412. [PMID: 37854269 PMCID: PMC10579158 DOI: 10.1007/s11692-023-09612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-023-09612-5.
Collapse
Affiliation(s)
- Athene Giesen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University, Freiburg, Germany
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| |
Collapse
|
3
|
Zhang X, Ji X, Li C, Yang T, Huang J, Zhao Y, Wu Y, Ma S, Pang Y, Huang Y, He Y, Su B. A Late Pleistocene human genome from Southwest China. Curr Biol 2022; 32:3095-3109.e5. [PMID: 35839766 DOI: 10.1016/j.cub.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Southern East Asia is the dispersal center regarding the prehistoric settlement and migrations of modern humans in Asia-Pacific regions. However, the settlement pattern and population structure of paleolithic humans in this region remain elusive, and ancient DNA can provide direct information. Here, we sequenced the genome of a Late Pleistocene hominin (MZR), dated ∼14.0 thousand years ago from Red Deer Cave located in Southwest China, which was previously reported possessing mosaic features of modern and archaic hominins. MZR is the first Late Pleistocene genome from southern East Asia. Our results indicate that MZR is a modern human who represents an early diversified lineage in East Asia. The mtDNA of MZR belongs to an extinct basal lineage of the M9 haplogroup, reflecting a rich matrilineal diversity in southern East Asia during the Late Pleistocene. Combined with the published data, we detected clear genetic stratification in ancient southern populations of East/Southeast Asia and some degree of south-versus-north divergency during the Late Pleistocene, and MZR was identified as a southern East Asian who exhibits genetic continuity to present day populations. Markedly, MZR is linked deeply to the East Asian ancestry that contributed to First Americans.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xueping Ji
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China.
| | - Chunmei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyu Yang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiahui Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhui Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wu
- Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; School of History, Wuhan University, Wuhan 430072, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Shiwu Ma
- Mengzi Institute of Cultural Relics, Mengzi, Yunnan Province 661100, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
4
|
Sato T, Adachi N, Kimura R, Hosomichi K, Yoneda M, Oota H, Tajima A, Toyoda A, Kanzawa-Kiriyama H, Matsumae H, Koganebuchi K, Shimizu KK, Shinoda KI, Hanihara T, Weber A, Kato H, Ishida H. Whole-Genome Sequencing of a 900-Year-Old Human Skeleton Supports Two Past Migration Events from the Russian Far East to Northern Japan. Genome Biol Evol 2021; 13:6355032. [PMID: 34410389 PMCID: PMC8449830 DOI: 10.1093/gbe/evab192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 12/18/2022] Open
Abstract
Recent studies on paleogenomics have reported some Paleolithic and Neolithic genomes that have provided new insights into the human population history in East and Northeast Asia. However, there remain some cases where more recent migration events need to be examined to elucidate the detailed formation process of local populations. Although the area around northern Japan is one of the regions archaeologically suggested to have been affected by migration waves after the Neolithic period, the genetic source of these migrations are still unclear. Thus, genomic data from such past migrant populations would be highly informative to clarify the detailed formation process of local populations in this region. Here, we report the genome sequence of a 900-year-old adult female (NAT002) belonging to the prehistoric Okhotsk people, who have been considered to be the past migrants to northern Japan after the Neolithic period. We found a close relationship between NAT002 and modern Lower Amur populations and past admixture events between the Amur, Jomon, and Kamchatka ancestries. The admixture dating suggested migration of Amur-related ancestry at approximately 1,600 BP, which is compatible with the archaeological evidence regarding the settlement of the Okhotsk people. Our results also imply migration of Kamchatka-related ancestry at approximately 2,000 BP. In addition, human leukocyte antigen (HLA) typing detected the HLA-B*40 allele, which is reported to increase the risk of arthritis, suggesting the genetic vulnerability of NAT002 to hyperostosis, which was observed around her chest clavicle.
Collapse
Affiliation(s)
- Takehiro Sato
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.,Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noboru Adachi
- Department of Legal Medicine, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | | | - Hiromi Matsumae
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan.,Department of Molecular Life Science, School of Medicine, Tokai University, Isehara, Japan
| | - Kae Koganebuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Structure, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan.,Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kentaro K Shimizu
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Ken-Ichi Shinoda
- Department of Anthropology, National Museum of Nature and Science, Tsukuba, Japan
| | - Tsunehiko Hanihara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Andrzej Weber
- Department of Anthropology, University of Alberta, Edmonton, Alberta, Canada.,Research Centre "Baikal Region", Irkutsk State University, Irkutsk, Russia.,Laboratoire Méditerranéen de Préhistoire Europe Afrique (LAMPEA) - UMR 7269, Aix-Marseille Université, Aix-en-Provence, France
| | - Hirofumi Kato
- Centre for Ainu and Indigenous Studies, Hokkaido University, Sapporo, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
5
|
OSADA NAOKI, KAWAI YOSUKE. Exploring models of human migration to the Japanese archipelago using genome-wide genetic data. ANTHROPOL SCI 2021. [DOI: 10.1537/ase.201215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- NAOKI OSADA
- Faculty of Information Science and Technology, Hokkaido University, Sapporo
| | - YOSUKE KAWAI
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo
| |
Collapse
|
6
|
Abstract
East Asia constitutes one-fifth of the global population and exhibits substantial genetic diversity. However, genetic investigations on populations in this region have been largely under-represented compared with European populations. Nonetheless, the last decade has seen considerable efforts and progress in genome-wide genotyping and whole-genome sequencing of the East-Asian ethnic groups. Here, we review the recent studies in terms of ancestral origin, population relationship, genetic differentiation, and admixture of major East- Asian groups, such as the Chinese, Korean, and Japanese populations. We mainly focus on insights from the whole-genome sequence data and also include the recent progress based on mitochondrial DNA (mtDNA) and Y chromosome data. We further discuss the evolutionary forces driving genetic diversity in East-Asian populations, and provide our perspectives for future directions on population genetics studies, particularly on underrepresented indigenous groups in East Asia.
Collapse
Affiliation(s)
- Ziqing Pan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech Universit, Shanghai, 201210, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity in local North African cattle. Sci Rep 2020; 10:19466. [PMID: 33173134 PMCID: PMC7655849 DOI: 10.1038/s41598-020-76576-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Natural-driven selection is supposed to have left detectable signatures on the genome of North African cattle which are often characterized by the fixation of genetic variants associated with traits under selection pressure and/or an outstanding genetic differentiation with other populations at particular loci. Here, we investigate the population genetic structure and we provide a first outline of potential selection signatures in North African cattle using single nucleotide polymorphism genotyping data. After comparing our data to African, European and indicine cattle populations, we identified 36 genomic regions using three extended haplotype homozygosity statistics and 92 outlier markers based on Bayescan test. The 13 outlier windows detected by at least two approaches, harboured genes (e.g. GH1, ACE, ASIC3, HSPH1, MVD, BCL2, HIGD2A, CBFA2T3) that may be involved in physiological adaptations required to cope with environmental stressors that are typical of the North African area such as infectious diseases, extended drought periods, scarce food supply, oxygen scarcity in the mountainous areas and high-intensity solar radiation. Our data also point to candidate genes involved in transcriptional regulation suggesting that regulatory elements had also a prominent role in North African cattle response to environmental constraints. Our study yields novel insights into the unique adaptive capacity in these endangered populations emphasizing the need for the use of whole genome sequence data to gain a better understanding of the underlying molecular mechanisms.
Collapse
|
8
|
Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. You Will Never Walk Alone: Codispersal of JC Polyomavirus with Human Populations. Mol Biol Evol 2020; 37:442-454. [PMID: 31593241 DOI: 10.1093/molbev/msz227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
JC polyomavirus (JCPyV) is one of the most prevalent human viruses. Findings based on the geographic distribution of viral subtypes suggested that JCPyV codiverged with human populations. This view was however challenged by data reporting a much more recent origin and expansion of JCPyV. We collected information on ∼1,100 worldwide strains and we show that their geographic distribution roughly corresponds to major human migratory routes. Bayesian phylogeographic analysis inferred a Subsaharan origin for JCPyV, although with low posterior probability. High confidence inference at internal nodes provided strong support for a long-standing association between the virus and human populations. In line with these data, pairwise FST values for JCPyV and human mtDNA sampled from the same areas showed a positive and significant correlation. Likewise, very strong relationships were found when node ages in the JCPyV phylogeny were correlated with human population genetic distances (nuclear-marker based FST). Reconciliation analysis detected a significant cophylogenetic signal for the human population and JCPyV trees. Notably, JCPyV also traced some relatively recent migration events such as the expansion of people from the Philippines/Taiwan area into Remote Oceania, the gene flow between North-Eastern Siberian and Ainus, and the Koryak contribution to Circum-Arctic Americans. Finally, different molecular dating approaches dated the origin of JCPyV in a time frame that precedes human out-of-Africa migration. Thus, JCPyV infected early human populations and accompanied our species during worldwide dispersal. JCPyV typing can provide reliable geographic information and the virus most likely adapted to the genetic background of human populations.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| |
Collapse
|
9
|
Gakuhari T, Nakagome S, Rasmussen S, Allentoft ME, Sato T, Korneliussen T, Chuinneagáin BN, Matsumae H, Koganebuchi K, Schmidt R, Mizushima S, Kondo O, Shigehara N, Yoneda M, Kimura R, Ishida H, Masuyama T, Yamada Y, Tajima A, Shibata H, Toyoda A, Tsurumoto T, Wakebe T, Shitara H, Hanihara T, Willerslev E, Sikora M, Oota H. Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations. Commun Biol 2020; 3:437. [PMID: 32843717 PMCID: PMC7447786 DOI: 10.1038/s42003-020-01162-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Anatomically modern humans reached East Asia more than 40,000 years ago. However, key questions still remain unanswered with regard to the route(s) and the number of wave(s) in the dispersal into East Eurasia. Ancient genomes at the edge of the region may elucidate a more detailed picture of the peopling of East Eurasia. Here, we analyze the whole-genome sequence of a 2,500-year-old individual (IK002) from the main-island of Japan that is characterized with a typical Jomon culture. The phylogenetic analyses support multiple waves of migration, with IK002 forming a basal lineage to the East and Northeast Asian genomes examined, likely representing some of the earliest-wave migrants who went north from Southeast Asia to East Asia. Furthermore, IK002 shows strong genetic affinity with the indigenous Taiwan aborigines, which may support a coastal route of the Jomon-ancestry migration. This study highlights the power of ancient genomics to provide new insights into the complex history of human migration into East Eurasia. Takashi Gakuhari, Shigeki Nakagome et al. report the genomic analysis on a 2.5 kya individual from the ancient Jomon culture in present-day Japan. Phylogenetic analysis with comparison to other Eurasian sequences suggests early migration patterns in Asia and provides insight into the genetic affinities between peoples of the region.
Collapse
Affiliation(s)
- Takashi Gakuhari
- Center for Cultural Resource Studies, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Kitasato University School of Medicine, Sagamihara, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Simon Rasmussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Trace and Environmental DNA (TrEnD) laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Thorfinn Korneliussen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Ryan Schmidt
- Kitasato University School of Medicine, Sagamihara, Japan
| | - Souichiro Mizushima
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Osamu Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuo Shigehara
- Nara National Research Institute for Cultural Properties, Nara, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Hajime Ishida
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Toshiyuki Tsurumoto
- Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Tetsuaki Wakebe
- Department of Macroscopic Anatomy, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Hiromi Shitara
- Department of Archaeology, The University of Tokyo, Tokyo, Japan
| | | | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,GeoGenetics Groups, Department of Zoology, University of Cambridge, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Hiroki Oota
- Kitasato University School of Medicine, Sagamihara, Japan. .,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Uchiyama J, Gillam JC, Savelyev A, Ning C. Populations dynamics in Northern Eurasian forests: a long-term perspective from Northeast Asia. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e16. [PMID: 37588381 PMCID: PMC10427466 DOI: 10.1017/ehs.2020.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 'Northern Eurasian Greenbelt' (NEG) is the northern forest zone stretching from the Japanese Archipelago to Northern Europe. The NEG has created highly productive biomes for humanity to exploit since the end of the Pleistocene. This research explores how the ecological conditions in northern Eurasia contributed to and affected human migrations and cultural trajectories by synthesizing the complimentary viewpoints of environmental archaeology, Geographic Information Science (GIS), genetics and linguistics. First, the environmental archaeology perspective raises the possibility that the NEG functioned as a vessel fostering people to develop diverse cultures and engage in extensive cross-cultural exchanges. Second, geographical analysis of genomic data on mitochondrial DNA using GIS reveals the high probability that population dynamics in the southeastern NEG promoted the peopling of the Americas at the end of the Pleistocene. Finally, a linguistic examination of environmental- and landscape-related vocabulary of the proto-Turkic language groups enables the outline of their original cultural landscape and natural conditions, demonstrating significant cultural spheres, i.e. from southern Siberia to eastern Inner Mongolia during Neolithization. All of these results combine to suggest that the ecological complex in the southern edge of the NEG in northeast Asia played a significant role in peopling across the continents during prehistory.
Collapse
Affiliation(s)
- Junzo Uchiyama
- The Sainsbury Institute for the Study of Japanese Arts and Cultures, University of East Anglia, 64 The Close, NorwichNR1 4DH, UK
- Center for Cultural Resource Studies, Kanazawa University, Kakuma-machi, Kanazawa-shi, 920-1192, Japan
| | - J. Christopher Gillam
- Department of Sociology, Criminology and Anthropology, Winthrop University, 319 Kinard Hall, Rock Hill, SC29733, USA
| | - Alexander Savelyev
- Max Planck Institute for the Science of Human History, 07745Jena, Germany
- Institute of Linguistics, Russian Academy of Sciences, Bolshoy Kislovsky Pereulok 1/1, 125009Moscow, Russia
| | - Chao Ning
- Max Planck Institute for the Science of Human History, 07745Jena, Germany
| |
Collapse
|
11
|
de Boer E, Yang MA, Kawagoe A, Barnes GL. Japan considered from the hypothesis of farmer/language spread. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e13. [PMID: 37588377 PMCID: PMC10427481 DOI: 10.1017/ehs.2020.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Formally, the Farming/Language Dispersal hypothesis as applied to Japan relates to the introduction of agriculture and spread of the Japanese language (between ca. 500 BC-AD 800). We review current data from genetics, archaeology, and linguistics in relation to this hypothesis. However, evidence bases for these disciplines are drawn from different periods. Genetic data have primarily been sampled from present-day Japanese and prehistoric Jōmon peoples (14,000-300 BC), preceding the introduction of rice agriculture. The best archaeological evidence for agriculture comes from western Japan during the Yayoi period (ca. 900 BC-AD 250), but little is known about northeastern Japan, which is a focal point here. And despite considerable hypothesizing about prehistoric language, the spread of historic languages/ dialects through the islands is more accessible but difficult to relate to prehistory. Though the lack of Yayoi skeletal material available for DNA analysis greatly inhibits direct study of how the pre-agricultural Jōmon peoples interacted with rice agriculturalists, our review of Jōmon genetics sets the stage for further research into their relationships. Modern linguistic research plays an unexpected role in bringing Izumo (Shimane Prefecture) and the Japan Sea coast into consideration in the populating of northeastern Honshu by agriculturalists beyond the Kantō region.
Collapse
Affiliation(s)
- Elisabeth de Boer
- Faculty of East Asian Studies, Ruhr-Universität Bochum, Bochum, Germany
| | - Melinda A. Yang
- Department of Biology, University of Richmond, Richmond, Virginia, USA
| | - Aileen Kawagoe
- Department of Social Studies, New International School of Japan, Tokyo, Japan
| | | |
Collapse
|
12
|
Hudson MJ, Nakagome S, Whitman JB. The evolving Japanese: the dual structure hypothesis at 30. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e6. [PMID: 37588379 PMCID: PMC10427290 DOI: 10.1017/ehs.2020.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The population history of Japan has been one of the most intensively studied anthropological questions anywhere in the world, with a huge literature dating back to the nineteenth century and before. A growing consensus over the 1980s that the modern Japanese comprise an admixture of a Neolithic population with Bronze Age migrants from the Korean peninsula was crystallised in Kazurō Hanihara's influential 'dual structure hypothesis' published in 1991. Here, we use recent research in biological anthropology, historical linguistics and archaeology to evaluate this hypothesis after three decades. Although the major assumptions of Hanihara's model have been supported by recent work, we discuss areas where new findings have led to a re-evaluation of aspects of the hypothesis and emphasise the need for further research in key areas including ancient DNA and archaeology.
Collapse
Affiliation(s)
- Mark J. Hudson
- Eurasia3angle Research Group, Max Planck Institute for the Science of Human History, Kahlaische straße 10, 07745Jena, Germany
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, 150-162 Pearse Street, Dublin, Ireland
| | - John B. Whitman
- Department of Linguistics, Cornell University, 203 Morrill Hall, Ithaca, NY14853, USA
| |
Collapse
|
13
|
Medaka Population Genome Structure and Demographic History Described via Genotyping-by-Sequencing. G3-GENES GENOMES GENETICS 2019; 9:217-228. [PMID: 30482798 PMCID: PMC6325896 DOI: 10.1534/g3.118.200779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Medaka is a model organism in medicine, genetics, developmental biology and population genetics. Lab stocks composed of more than 100 local wild populations are available for research in these fields. Thus, medaka represents a potentially excellent bioresource for screening disease-risk- and adaptation-related genes in genome-wide association studies. Although the genetic population structure should be known before performing such an analysis, a comprehensive study on the genome-wide diversity of wild medaka populations has not been performed. Here, we performed genotyping-by-sequencing (GBS) for 81 and 12 medakas captured from a bioresource and the wild, respectively. Based on the GBS data, we evaluated the genetic population structure and estimated the demographic parameters using an approximate Bayesian computation (ABC) framework. The genome-wide data confirmed that there were substantial differences between local populations and supported our previously proposed hypothesis on medaka dispersal based on mitochondrial genome (mtDNA) data. A new finding was that a local group that was thought to be a hybrid between the northern and the southern Japanese groups was actually an origin of the northern Japanese group. Thus, this paper presents the first population-genomic study of medaka and reveals its population structure and history based on chromosomal genetic diversity.
Collapse
|
14
|
KANZAWA-KIRIYAMA HIDEAKI, JINAM TIMOTHYA, KAWAI YOSUKE, SATO TAKEHIRO, HOSOMICHI KAZUYOSHI, TAJIMA ATSUSHI, ADACHI NOBORU, MATSUMURA HIROFUMI, KRYUKOV KIRILL, SAITOU NARUYA, SHINODA KENICHI. Late Jomon male and female genome sequences from the Funadomari site in Hokkaido, Japan. ANTHROPOL SCI 2019. [DOI: 10.1537/ase.190415] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - TIMOTHY A. JINAM
- Division of Population Genetics, National Institute of Genetics, Mishima
| | - YOSUKE KAWAI
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - TAKEHIRO SATO
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa
| | - KAZUYOSHI HOSOMICHI
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa
| | - ATSUSHI TAJIMA
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa
| | - NOBORU ADACHI
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo
| | - HIROFUMI MATSUMURA
- Second Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo
| | - KIRILL KRYUKOV
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara
| | - NARUYA SAITOU
- Division of Population Genetics, National Institute of Genetics, Mishima
| | - KEN-ICHI SHINODA
- Department of Anthropology, National Museum of Nature and Science, Tsukuba
| |
Collapse
|
15
|
McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, van Driem G, Gram Wilken U, Seguin-Orlando A, de la Fuente Castro C, Wasef S, Shoocongdej R, Souksavatdy V, Sayavongkhamdy T, Saidin MM, Allentoft ME, Sato T, Malaspinas AS, Aghakhanian FA, Korneliussen T, Prohaska A, Margaryan A, de Barros Damgaard P, Kaewsutthi S, Lertrit P, Nguyen TMH, Hung HC, Minh Tran T, Nghia Truong H, Nguyen GH, Shahidan S, Wiradnyana K, Matsumae H, Shigehara N, Yoneda M, Ishida H, Masuyama T, Yamada Y, Tajima A, Shibata H, Toyoda A, Hanihara T, Nakagome S, Deviese T, Bacon AM, Duringer P, Ponche JL, Shackelford L, Patole-Edoumba E, Nguyen AT, Bellina-Pryce B, Galipaud JC, Kinaston R, Buckley H, Pottier C, Rasmussen S, Higham T, Foley RA, Lahr MM, Orlando L, Sikora M, Phipps ME, Oota H, Higham C, Lambert DM, Willerslev E. The prehistoric peopling of Southeast Asia. Science 2018; 361:88-92. [DOI: 10.1126/science.aat3628] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
The human occupation history of Southeast Asia (SEA) remains heavily debated. Current evidence suggests that SEA was occupied by Hòabìnhian hunter-gatherers until ~4000 years ago, when farming economies developed and expanded, restricting foraging groups to remote habitats. Some argue that agricultural development was indigenous; others favor the “two-layer” hypothesis that posits a southward expansion of farmers giving rise to present-day Southeast Asian genetic diversity. By sequencing 26 ancient human genomes (25 from SEA, 1 Japanese Jōmon), we show that neither interpretation fits the complexity of Southeast Asian history: Both Hòabìnhian hunter-gatherers and East Asian farmers contributed to current Southeast Asian diversity, with further migrations affecting island SEA and Vietnam. Our results help resolve one of the long-standing controversies in Southeast Asian prehistory.
Collapse
Affiliation(s)
- Hugh McColl
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Fernando Racimo
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Fabrice Demeter
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
- National Museum of Natural History, Ecoanthropology and Ethnobiology, Musée de l’Homme, Paris, France
| | - Takashi Gakuhari
- Center for Cultural Resource Studies, Kanazawa University, Kanazawa, Japan
- Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, Bern, Switzerland
- University of New England, Armidale, NSW, Australia
| | - Uffe Gram Wilken
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
- Laboratoire AMIS, Université Paul Sabatier (UPS), Toulouse, France
| | | | - Sally Wasef
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD, Australia
| | - Rasmi Shoocongdej
- Department of Archaeology, Faculty of Archaeology, Silpakorn University, Bangkok, Thailand
| | - Viengkeo Souksavatdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Lao People’s Democratic Republic
| | - Thongsa Sayavongkhamdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Lao People’s Democratic Republic
| | - Mohd Mokhtar Saidin
- Centre for Global Archaeological Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Morten E. Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne and SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Farhang A. Aghakhanian
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Sunway City, Selangor, Malaysia
| | | | - Ana Prohaska
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | | | - Supannee Kaewsutthi
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patcharee Lertrit
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thi Mai Huong Nguyen
- Anthropological and Paleoenvironmental Department, Institute of Archaeology, Hanoi, Vietnam
| | - Hsiao-chun Hung
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT, Australia
| | - Thi Minh Tran
- Anthropological and Paleoenvironmental Department, Institute of Archaeology, Hanoi, Vietnam
| | - Huu Nghia Truong
- Anthropological and Paleoenvironmental Department, Institute of Archaeology, Hanoi, Vietnam
| | - Giang Hai Nguyen
- Anthropological and Paleoenvironmental Department, Institute of Archaeology, Hanoi, Vietnam
| | - Shaiful Shahidan
- Centre for Global Archaeological Research, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Hiromi Matsumae
- Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nobuo Shigehara
- Nara National Research Institute for Cultural Properties, Nara, Japan
| | - Minoru Yoneda
- University Museum, University of Tokyo, Tokyo, Japan
| | - Hajime Ishida
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | | | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | | | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Thibaut Deviese
- Oxford Radiocarbon Accelerator Unit (ORAU), University of Oxford, Oxford, UK
| | - Anne-Marie Bacon
- Laboratoire AMIS, Université Paris Descartes, Faculté de Chirurgie Dentaire, Montrouge, France
| | - Philippe Duringer
- École et Observatoire des Sciences de la Terre, Université de Strasbourg, Strasbourg, France
- Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UDS UMR 7516), Strasbourg, France
| | - Jean-Luc Ponche
- Laboratory “Image Ville et Environnement LIVE,” UMR7362, CNRS and Université de Strasbourg, Strasbourg, France
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | - Anh Tuan Nguyen
- Anthropological and Paleoenvironmental Department, Institute of Archaeology, Hanoi, Vietnam
| | - Bérénice Bellina-Pryce
- CNRS, UMR7055 “Préhistoire et Technologie,” Maison Archéologie et Ethnologie, Nanterre, France
| | - Jean-Christophe Galipaud
- Research Institute for Development, National Museum of Natural History, UMR Paloc, Paris, France
| | - Rebecca Kinaston
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Hallie Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tom Higham
- Oxford Radiocarbon Accelerator Unit (ORAU), University of Oxford, Oxford, UK
| | - Robert A. Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Marta Mirazón Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
- Laboratoire AMIS, Université Paul Sabatier (UPS), Toulouse, France
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Maude E. Phipps
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Sunway City, Selangor, Malaysia
| | - Hiroki Oota
- Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Charles Higham
- Department of Anthropology and Archaeology, University of Otago, Dunedin, New Zealand
- St. Catharine’s College, University of Cambridge, Cambridge, UK
| | - David M. Lambert
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
16
|
Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, Tabara Y, Yamamoto K, Yokota M, Liu X, Saw WY, Mamatyusupu D, Yang W, Xu S, Japanese Genome Variation Consortium, Teo YY, Kato N. The fine-scale genetic structure and evolution of the Japanese population. PLoS One 2017; 12:e0185487. [PMID: 29091727 PMCID: PMC5665431 DOI: 10.1371/journal.pone.0185487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail: (FT); (NK)
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Xuanyao Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Wenjun Yang
- Key Laboratory of Reproduction and Heredity of Ningxia Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | | | - Yik-Ying Teo
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail: (FT); (NK)
| |
Collapse
|