1
|
McDonald DW, Dib RN, De Luca C, Shah A, Duennwald ML. Specific branches of the proteostasis network regulate the toxicity associated with mistranslation. Nucleic Acids Res 2025; 53:gkaf428. [PMID: 40377218 DOI: 10.1093/nar/gkaf428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
All cellular functions rely on accurate protein biosynthesis. Yet, many variants of transfer RNA (tRNA) genes that induce amino acid misincorporation are found in human genomes. Mistranslation induces pleiotropic effects on proteostasis, ranging from protein misfolding to impaired protein biosynthesis and degradation. We employ Saccharomyces cerevisiae (budding yeast), a genetically and biochemically tractable model that facilitates quantitative analysis of how specific proteostasis pathways interact with mistranslating tRNAs. We tested two mistranslating tRNASer variants, one inducing proline to serine (P > S), the other arginine to serine (R > S) misincorporation. We found that P > S misincorporation impairs cellular fitness and sensitizes cells to protein misfolding to a greater extent than R > S misincorporation. Of note, we also show that, even though both tRNA variants induce misincorporation of serine, they result in the accumulation of misfolded proteins by distinct mechanisms. Specifically, R > S misincorporation reduces that association of Hsp70 with misfolded proteins, while P > S misincorporation impairs the degradation of nascent polypeptides. Our findings reveal that different mistranslating tRNASer variants impair specific branches of proteostasis and thus compromise cellular fitness by distinct mechanisms.
Collapse
Affiliation(s)
- Donovan W McDonald
- Department of Biology, The University of Western Ontario, London, ONN6A 3K7, Canada
| | - Rebecca N Dib
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ONN6A 3K7, Canada
| | - Christopher De Luca
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ONN6A 3K7, Canada
| | - Ashmi Shah
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ONN6A 3K7, Canada
| | - Martin L Duennwald
- Department of Biology, The University of Western Ontario, London, ONN6A 3K7, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ONN6A 3K7, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ONN6A 3K7, Canada
| |
Collapse
|
2
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae230. [PMID: 39312260 PMCID: PMC11631534 DOI: 10.1093/g3journal/jkae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Since mistranslation disrupts cellular translation and proteostasis, we also tested the hypothesis that tRNA variants impact fly lifespan. Interestingly, mistranslating females experienced extended lifespan whereas mistranslating male lifespan was unaffected. Consistent with delayed neurodegeneration and beneficial effects of mistranslation, mistranslating flies from both sexes showed improved locomotion as they aged. The ability of mistranslating tRNA variants to have both positive and negative effects on fly physiology and behaviour has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
- Joshua R Isaacson
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jessica Jagiello
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - William Yeung
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Brendan Charles
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Brandl
- Department of Biochemistry, Western University, London, Ontario, Canada, N6A 5B7
| | - Amanda J Moehring
- Department of Biology, Western University, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
3
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598535. [PMID: 38915589 PMCID: PMC11195196 DOI: 10.1101/2024.06.11.598535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - Jessica Jagiello
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Brendan Charles
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
4
|
Davey-Young J, Hasan F, Tennakoon R, Rozik P, Moore H, Hall P, Cozma E, Genereaux J, Hoffman KS, Chan PP, Lowe TM, Brandl CJ, O’Donoghue P. Mistranslating the genetic code with leucine in yeast and mammalian cells. RNA Biol 2024; 21:1-23. [PMID: 38629491 PMCID: PMC11028032 DOI: 10.1080/15476286.2024.2340297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
Collapse
Affiliation(s)
- Josephine Davey-Young
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Henry Moore
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter Hall
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Cozma E, Rao M, Dusick M, Genereaux J, Rodriguez-Mias RA, Villén J, Brandl CJ, Berg MD. Anticodon sequence determines the impact of mistranslating tRNA Ala variants. RNA Biol 2023; 20:791-804. [PMID: 37776539 PMCID: PMC10543346 DOI: 10.1080/15476286.2023.2257471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Transfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNAAla and the anticodon plays no role in charging, tRNAAla variants with anticodon mutations have the potential to mis-incorporate alanine. Here, we characterize the impact of the 60 non-alanine tRNAAla anticodon variants on the growth of Saccharomyces cerevisiae. Overall, 36 tRNAAla anticodon variants decreased growth in single- or multi-copy. Mass spectrometry analysis of the cellular proteome revealed that 52 of 57 anticodon variants, not decoding alanine or stop codons, induced mistranslation when on single-copy plasmids. Variants with G/C-rich anticodons resulted in larger growth deficits than A/U-rich variants. In most instances, synonymous anticodon variants impact growth differently, with anticodons containing U at base 34 being the least impactful. For anticodons generating the same amino acid substitution, reduced growth generally correlated with the abundance of detected mistranslation events. Differences in decoding specificity, even between synonymous anticodons, resulted in each tRNAAla variant mistranslating unique sets of peptides and proteins. We suggest that these differences in decoding specificity are also important in determining the impact of tRNAAla anticodon variants.
Collapse
Affiliation(s)
- Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Megha Rao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Madison Dusick
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Berg MD, Zhu Y, Loll-Krippleber R, San Luis BJ, Genereaux J, Boone C, Villén J, Brown GW, Brandl CJ. Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG. G3 GENES|GENOMES|GENETICS 2022; 12:6588684. [PMID: 35587152 PMCID: PMC9258585 DOI: 10.1093/g3journal/jkac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
Transfer RNA variants increase the frequency of mistranslation, the misincorporation of an amino acid not specified by the “standard” genetic code, to frequencies approaching 10% in yeast and bacteria. Cells cope with these variants by having multiple copies of each tRNA isodecoder and through pathways that deal with proteotoxic stress. In this study, we define the genetic interactions of the gene encoding tRNASerUGG,G26A, which mistranslates serine at proline codons. Using a collection of yeast temperature-sensitive alleles, we identify negative synthetic genetic interactions between the mistranslating tRNA and 109 alleles representing 91 genes, with nearly half of the genes having roles in RNA processing or protein folding and turnover. By regulating tRNA expression, we then compare the strength of the negative genetic interaction for a subset of identified alleles under differing amounts of mistranslation. The frequency of mistranslation correlated with the impact on cell growth for all strains analyzed; however, there were notable differences in the extent of the synthetic interaction at different frequencies of mistranslation depending on the genetic background. For many of the strains, the extent of the negative interaction with tRNASerUGG,G26A was proportional to the frequency of mistranslation or only observed at intermediate or high frequencies. For others, the synthetic interaction was approximately equivalent at all frequencies of mistranslation. As humans contain similar mistranslating tRNAs, these results are important when analyzing the impact of tRNA variants on disease, where both the individual’s genetic background and the expression of the mistranslating tRNA variant need to be considered.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario , London, ON N6A 5C1, Canada
- Department of Genome Sciences, University of Washington , Seattle, WA 98195, USA
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario , London, ON N6A 5C1, Canada
| | - Raphaël Loll-Krippleber
- Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario , London, ON N6A 5C1, Canada
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington , Seattle, WA 98195, USA
| | - Grant W Brown
- Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 3E1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario , London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Isaacson JR, Berg MD, Charles B, Jagiello J, Villén J, Brandl CJ, Moehring AJ. A novel mistranslating tRNA model in Drosophila melanogaster has diverse, sexually dimorphic effects. G3 GENES|GENOMES|GENETICS 2022; 12:6526391. [PMID: 35143655 PMCID: PMC9073681 DOI: 10.1093/g3journal/jkac035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles.
Collapse
Affiliation(s)
- Joshua R Isaacson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brendan Charles
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jessica Jagiello
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Berg MD, Isaacson JR, Cozma E, Genereaux J, Lajoie P, Villén J, Brandl CJ. Regulating Expression of Mistranslating tRNAs by Readthrough RNA Polymerase II Transcription. ACS Synth Biol 2021; 10:3177-3189. [PMID: 34726901 PMCID: PMC8765249 DOI: 10.1021/acssynbio.1c00461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Transfer RNA (tRNA)
variants that alter the genetic code increase
protein diversity and have many applications in synthetic biology.
Since the tRNA variants can cause a loss of proteostasis, regulating
their expression is necessary to achieve high levels of novel protein.
Mechanisms to positively regulate transcription with exogenous activator
proteins like those often used to regulate RNA polymerase II (RNAP
II)-transcribed genes are not applicable to tRNAs as their expression
by RNA polymerase III requires elements internal to the tRNA. Here,
we show that tRNA expression is repressed by overlapping transcription
from an adjacent RNAP II promoter. Regulating the expression of the
RNAP II promoter allows inverse regulation of the tRNA. Placing either
Gal4- or TetR–VP16-activated promoters downstream of a mistranslating
tRNASer variant that misincorporates serine at proline
codons in Saccharomyces cerevisiae allows
mistranslation at a level not otherwise possible because of the toxicity
of the unregulated tRNA. Using this inducible tRNA system, we explore
the proteotoxic effects of mistranslation on yeast cells. High levels
of mistranslation cause cells to arrest in the G1 phase. These cells
are impermeable to propidium iodide, yet growth is not restored upon
repressing tRNA expression. High levels of mistranslation increase
cell size and alter cell morphology. This regulatable tRNA expression
system can be applied to study how native tRNAs and tRNA variants
affect the proteome and other biological processes. Variations of
this inducible tRNA system should be applicable to other eukaryotic
cell types.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Joshua R. Isaacson
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
9
|
Lant JT, Kiri R, Duennwald ML, O'Donoghue P. Formation and persistence of polyglutamine aggregates in mistranslating cells. Nucleic Acids Res 2021; 49:11883-11899. [PMID: 34718744 PMCID: PMC8599886 DOI: 10.1093/nar/gkab898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rashmi Kiri
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
10
|
Berg MD, Zhu Y, Ruiz BY, Loll-Krippleber R, Isaacson J, San Luis BJ, Genereaux J, Boone C, Villén J, Brown GW, Brandl CJ. The amino acid substitution affects cellular response to mistranslation. G3-GENES GENOMES GENETICS 2021; 11:6310018. [PMID: 34568909 PMCID: PMC8473984 DOI: 10.1093/g3journal/jkab218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023]
Abstract
Mistranslation, the misincorporation of an amino acid not specified by the "standard" genetic code, occurs in all organisms. tRNA variants that increase mistranslation arise spontaneously and engineered tRNAs can achieve mistranslation frequencies approaching 10% in yeast and bacteria. Interestingly, human genomes contain tRNA variants with the potential to mistranslate. Cells cope with increased mistranslation through multiple mechanisms, though high levels cause proteotoxic stress. The goal of this study was to compare the genetic interactions and the impact on transcriptome and cellular growth of two tRNA variants that mistranslate at a similar frequency but create different amino acid substitutions in Saccharomyces cerevisiae. One tRNA variant inserts alanine at proline codons whereas the other inserts serine for arginine. Both tRNAs decreased growth rate, with the effect being greater for arginine to serine than for proline to alanine. The tRNA that substituted serine for arginine resulted in a heat shock response. In contrast, heat shock response was minimal for proline to alanine substitution. Further demonstrating the significance of the amino acid substitution, transcriptome analysis identified unique up- and down-regulated genes in response to each mistranslating tRNA. Number and extent of negative synthetic genetic interactions also differed depending upon type of mistranslation. Based on the unique responses observed for these mistranslating tRNAs, we predict that the potential of mistranslation to exacerbate diseases caused by proteotoxic stress depends on the tRNA variant. Furthermore, based on their unique transcriptomes and genetic interactions, different naturally occurring mistranslating tRNAs have the potential to negatively influence specific diseases.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Raphaël Loll-Krippleber
- Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S, Canada
| | - Joshua Isaacson
- Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bryan-Joseph San Luis
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Grant W Brown
- Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
Szepe KJ, Dyer PS, Johnson RI, Salter AM, Avery SV. Influence of environmental and genetic factors on food protein quality: current knowledge and future directions. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
13
|
Chemical-Genetic Interactions with the Proline Analog L-Azetidine-2-Carboxylic Acid in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:4335-4345. [PMID: 33082270 PMCID: PMC7718759 DOI: 10.1534/g3.120.401876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC), are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our goal was to identify genes that show chemical-genetic interactions with AZC in Saccharomyces cerevisiae and thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the yeast deletion and temperature sensitive collections, we found 72 alleles with negative chemical-genetic interactions with AZC treatment and 12 alleles that suppress AZC toxicity. Many of the genes with negative chemical-genetic interactions are involved in protein quality control pathways through the proteasome. Genes involved in actin cytoskeleton organization and endocytosis also had negative chemical-genetic interactions with AZC. Related to this, the number of actin patches per cell increases upon AZC treatment. Many of the same cellular processes were identified to have interactions with proteotoxic stress caused by two other amino acid analogs, canavanine and thialysine, or a mistranslating tRNA variant that mis-incorporates serine at proline codons. Alleles that suppressed AZC-induced toxicity functioned through the amino acid sensing TOR pathway or controlled amino acid permeases required for AZC uptake. Further suggesting the potential of genetic changes to influence the cellular response to proteotoxic stress, overexpressing many of the genes that had a negative chemical-genetic interaction with AZC suppressed AZC toxicity.
Collapse
|
14
|
Zhu Y, Berg MD, Yang P, Loll-Krippleber R, Brown GW, Brandl CJ. Mistranslating tRNA identifies a deleterious S213P mutation in theSaccharomyces cerevisiaeeco1-1allele. Biochem Cell Biol 2020; 98:624-630. [DOI: 10.1139/bcb-2020-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNASerUGG, G26A, which mistranslates proline codons by inserting serine, and eco1-1, a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion. The suppression was partial, with a tRNA that inserts alanine at proline codons and not apparent for a tRNA that inserts serine at arginine codons. Sequencing of the eco1-1 allele revealed a mutation that would convert the highly conserved serine 213 within β7 of the GCN5-related N-acetyltransferase core to proline. Mutation of P213 in eco1-1 back to the wild-type serine restored the function of the enzyme at elevated temperatures. Our results indicate the utility of mistranslating tRNA variants to identify functionally relevant mutations and identify eco1 as a reporter for mistranslation. We propose that mistranslation could be used as a tool to treat genetic disease.
Collapse
Affiliation(s)
- Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Phoebe Yang
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Raphaël Loll-Krippleber
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Grant W. Brown
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
15
|
Berg MD, Zhu Y, Genereaux J, Ruiz BY, Rodriguez-Mias RA, Allan T, Bahcheli A, Villén J, Brandl CJ. Modulating Mistranslation Potential of tRNA Ser in Saccharomyces cerevisiae. Genetics 2019; 213:849-863. [PMID: 31484688 PMCID: PMC6827378 DOI: 10.1534/genetics.119.302525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | | | - Tyler Allan
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander Bahcheli
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
16
|
Berg MD, Giguere DJ, Dron JS, Lant JT, Genereaux J, Liao C, Wang J, Robinson JF, Gloor GB, Hegele RA, O'Donoghue P, Brandl CJ. Targeted sequencing reveals expanded genetic diversity of human transfer RNAs. RNA Biol 2019; 16:1574-1585. [PMID: 31407949 PMCID: PMC6779403 DOI: 10.1080/15476286.2019.1646079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transfer RNAs are required to translate genetic information into proteins as well as regulate other cellular processes. Nucleotide changes in tRNAs can result in loss or gain of function that impact the composition and fidelity of the proteome. Despite links between tRNA variation and disease, the importance of cytoplasmic tRNA variation has been overlooked. Using a custom capture panel, we sequenced 605 human tRNA-encoding genes from 84 individuals. We developed a bioinformatic pipeline that allows more accurate tRNA read mapping and identifies multiple polymorphisms occurring within the same variant. Our analysis identified 522 unique tRNA-encoding sequences that differed from the reference genome from 84 individuals. Each individual had ~66 tRNA variants including nine variants found in less than 5% of our sample group. Variants were identified throughout the tRNA structure with 17% predicted to enhance function. Eighteen anticodon mutants were identified including potentially mistranslating tRNAs; e.g., a tRNASer that decodes Phe codons. Similar engineered tRNA variants were previously shown to inhibit cell growth, increase apoptosis and induce the unfolded protein response in mammalian cell cultures and chick embryos. Our analysis shows that human tRNA variation has been underestimated. We conclude that the large number of tRNA genes provides a buffer enabling the emergence of variants, some of which could contribute to disease.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Daniel J Giguere
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Jacqueline S Dron
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Calwing Liao
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - Jian Wang
- Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - John F Robinson
- Robarts Research Institute, The University of Western Ontario , London , ON , Canada
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| | - Robert A Hegele
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Robarts Research Institute, The University of Western Ontario , London , ON , Canada.,Department of Medicine, The University of Western Ontario , London , ON , Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada.,Department of Chemistry, The University of Western Ontario , London , ON , Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario , London , ON , Canada
| |
Collapse
|
17
|
Lant JT, Berg MD, Heinemann IU, Brandl CJ, O'Donoghue P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem 2019; 294:5294-5308. [PMID: 30643023 DOI: 10.1074/jbc.rev118.002982] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.
Collapse
Affiliation(s)
| | | | | | | | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
18
|
Berg MD, Genereaux J, Zhu Y, Mian S, Gloor GB, Brandl CJ. Acceptor Stem Differences Contribute to Species-Specific Use of Yeast and Human tRNA Ser. Genes (Basel) 2018; 9:E612. [PMID: 30544642 PMCID: PMC6316282 DOI: 10.3390/genes9120612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of translation are highly conserved in all organisms indicative of a single evolutionary origin. This includes the molecular interactions of tRNAs with their cognate aminoacyl-tRNA synthetase, which must be precise to ensure the specificity of the process. For many tRNAs, the anticodon is a major component of the specificity. This is not the case for the aminoacylation of alanine and serine to their cognate tRNAs. Rather, aminoacylation relies on other features of the tRNA. For tRNASer, a key specificity feature is the variable arm, which is positioned between the anticodon arm and the T-arm. The variable arm is conserved from yeast to human. This work was initiated to determine if the structure/function of tRNASer has been conserved from Saccharomyces cerevisiae to human. We did this by detecting mistranslation in yeast cells with tRNASer derivatives having the UGA anticodon converted to UGG for proline. Despite being nearly identical in everything except the acceptor stem, human tRNASer is less active than yeast tRNASer. A chimeric tRNA with the human acceptor stem and other sequences from the yeast molecule acts similarly to the human tRNASer. The 3:70 base pair in the acceptor stem (C:G in yeast and A:U in humans) is a prime determinant of the specificity. Consistent with the functional difference of yeast and human tRNASer resulting from subtle changes in the specificity of their respective SerRS enzymes, the functionality of the human and chimeric tRNASerUGG molecules was enhanced when human SerRS was introduced into yeast. Residues in motif 2 of the aminoacylation domain of SerRS likely participated in the species-specific differences. Trp290 in yeast SerRS (Arg313 in humans) found in motif 2 is proximal to base 70 in models of the tRNA-synthetase interaction. Altering this motif 2 sequence of hSerRS to the yeast sequence decreases the activity of the human enzyme with human tRNASer, supporting the coadaptation of motif 2 loop⁻acceptor stem interactions.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Safee Mian
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
19
|
Versatility of Synthetic tRNAs in Genetic Code Expansion. Genes (Basel) 2018; 9:genes9110537. [PMID: 30405060 PMCID: PMC6267555 DOI: 10.3390/genes9110537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Transfer RNA (tRNA) is a dynamic molecule used by all forms of life as a key component of the translation apparatus. Each tRNA is highly processed, structured, and modified, to accurately deliver amino acids to the ribosome for protein synthesis. The tRNA molecule is a critical component in synthetic biology methods for the synthesis of proteins designed to contain non-canonical amino acids (ncAAs). The multiple interactions and maturation requirements of a tRNA pose engineering challenges, but also offer tunable features. Major advances in the field of genetic code expansion have repeatedly demonstrated the central importance of suppressor tRNAs for efficient incorporation of ncAAs. Here we review the current status of two fundamentally different translation systems (TSs), selenocysteine (Sec)- and pyrrolysine (Pyl)-TSs. Idiosyncratic requirements of each of these TSs mandate how their tRNAs are adapted and dictate the techniques used to select or identify the best synthetic variants.
Collapse
|
20
|
Zimmerman SM, Kon Y, Hauke AC, Ruiz BY, Fields S, Phizicky EM. Conditional accumulation of toxic tRNAs to cause amino acid misincorporation. Nucleic Acids Res 2018; 46:7831-7843. [PMID: 30007351 PMCID: PMC6125640 DOI: 10.1093/nar/gky623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/16/2022] Open
Abstract
To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.
Collapse
Affiliation(s)
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Alayna C Hauke
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Lant JT, Berg MD, Sze DHW, Hoffman KS, Akinpelu IC, Turk MA, Heinemann IU, Duennwald ML, Brandl CJ, O'Donoghue P. Visualizing tRNA-dependent mistranslation in human cells. RNA Biol 2017; 15:567-575. [PMID: 28933646 DOI: 10.1080/15476286.2017.1379645] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-fidelity translation and a strictly accurate proteome were originally assumed as essential to life and cellular viability. Yet recent studies in bacteria and eukaryotic model organisms suggest that proteome-wide mistranslation can provide selective advantages and is tolerated in the cell at higher levels than previously thought (one error in 6.9 × 10-4 in yeast) with a limited impact on phenotype. Previously, we selected a tRNAPro containing a single mutation that induces mistranslation with alanine at proline codons in yeast. Yeast tolerate the mistranslation by inducing a heat-shock response and through the action of the proteasome. Here we found a homologous human tRNAPro (G3:U70) mutant that is not aminoacylated with proline, but is an efficient alanine acceptor. In live human cells, we visualized mistranslation using a green fluorescent protein reporter that fluoresces in response to mistranslation at proline codons. In agreement with measurements in yeast, quantitation based on the GFP reporter suggested a mistranslation rate of up to 2-5% in HEK 293 cells. Our findings suggest a stress-dependent phenomenon where mistranslation levels increased during nutrient starvation. Human cells did not mount a detectable heat-shock response and tolerated this level of mistranslation without apparent impact on cell viability. Because humans encode ∼600 tRNA genes and the natural population has greater tRNA sequence diversity than previously appreciated, our data also demonstrate a cell-based screen with the potential to elucidate mutations in tRNAs that may contribute to or alleviate disease.
Collapse
Affiliation(s)
- Jeremy T Lant
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | - Matthew D Berg
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | - Daniel H W Sze
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | - Kyle S Hoffman
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | | | - Matthew A Turk
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | - Ilka U Heinemann
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | - Martin L Duennwald
- b Department of Pathology , The University of Western Ontario , London , ON , Canada
| | - Christopher J Brandl
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada
| | - Patrick O'Donoghue
- a Department of Biochemistry , The University of Western Ontario , London , ON , Canada.,c Department of Chemistry , The University of Western Ontario , London , ON , Canada
| |
Collapse
|