1
|
Estefania M, Andres R, Javier I, Marcelo Y, Ariel C. ASpli: Integrative analysis of splicing landscapes through RNA-Seq assays. Bioinformatics 2021; 37:2609-2616. [PMID: 33677494 DOI: 10.1093/bioinformatics/btab141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 02/27/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Genome-wide analysis of alternative splicing has been a very active field of research since the early days of Next Generation Sequencing technologies. Since then, ever-growing data availability and the development of increasingly sophisticated analysis methods have uncovered the complexity of the general splicing repertoire. A large number of splicing analysis methodologies exist, each of them presenting its own strengths and weaknesses. For instance methods exclusively relying on junction information do not take advantage of the large majority of reads produced in an RNA-seq assay, isoform reconstruction methods might not detect novel intron retention events, some solutions can only handle canonical splicing events, and many existing methods can only perform pairwise comparisons. RESULTS In this contribution, we present ASpli, a computational suite implemented in R statistical language, that allows the identification of changes in both, annotated and novel alternative splicing events and can deal with simple, multi-factor or paired experimental designs. Our integrative computational workflow considers the same GLM model, applied to different sets of reads and junctions, in order to compute complementary splicing signals.Analyzing simulated and real data we found that the consolidation of these signals resulted in a robust proxy of the occurrence of splicing alterations. While the analysis of junctions allowed us to uncover annotated as well as non-annotated events, read coverage signals notably increased recall capabilities at a very competitive performance when compared against other state-of-the-art splicing analysis algorithms. ASpli is freely available from the Bioconductor project site https://www.bioconductor.org/packages/ASpli. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Rabinovich Andres
- Fundacion Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Iserte Javier
- Fundacion Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yanovsky Marcelo
- Fundacion Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Chernomoretz Ariel
- Fundacion Instituto Leloir, Buenos Aires, Argentina.,Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisica de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Romanowski A, Schlaen RG, Perez-Santangelo S, Mancini E, Yanovsky MJ. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:889-902. [PMID: 32314836 DOI: 10.1111/tpj.14776] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.
Collapse
Affiliation(s)
- Andrés Romanowski
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Rubén G Schlaen
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Soledad Perez-Santangelo
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Estefanía Mancini
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Comparative Genomics of Plant Development, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
3
|
Tatullo M, Codispoti B, Spagnuolo G, Zavan B. Human Periapical Cyst-Derived Stem Cells Can Be A Smart "Lab-on-A-Cell" to Investigate Neurodegenerative Diseases and the Related Alteration of the Exosomes' Content. Brain Sci 2019; 9:E358. [PMID: 31817546 PMCID: PMC6955839 DOI: 10.3390/brainsci9120358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Promising researches have demonstrated that the alteration of biological rhythms may be consistently linked to neurodegenerative pathologies. Parkinson's disease (PD) has a multifactorial pathogenesis, involving both genetic and environmental and/or molecular co-factors. Generally, heterogeneous alterations in circadian rhythm (CR) are a typical finding in degenerative processes, such as cell aging and death. Although numerous genetic phenotypes have been discovered in the most common forms of PD, it seems that severe deficiencies in synaptic transmission and high vesicular recycling are frequently found in PD patients. Neuron-to-neuron interactions are often ensured by exosomes, a specific type of extracellular vesicle (EV). Neuron-derived exosomes may carry several active compounds, including miRNAs: Several studies have found that circulating miRNAs are closely associated with an atypical oscillation of circadian rhythm genes, and they are also involved in the regulation of clock genes, in animal models. In this context, a careful analysis of neural-differentiated Mesenchymal Stem Cells (MSCs) and the molecular and genetic characterization of their exosome content, both in healthy cells and in PD-induced cells, could be a strategic field of investigation for early diagnosis and better treatment of PD and similar neurodegenerative pathologies. A novel MSC population, called human periapical cyst-mesenchymal stem cells (hPCy-MSCs), has demonstrated that it naively expresswa the main neuronal markers, and may differentiate towards functional neurons. Therefore, hPCy-MSCs can be considered of particular interest for testing of in vitro strategies to treat neurological diseases. On the other hand, the limitations of using stem cells is an issue that leads researchers to perform experimental studies on the exosomes released by MCSs. Human periapical cyst-derived mesenkymal stem cells can be a smart "lab-on-a-cell" to investigate neurodegenerative diseases and the related exosomes' content alteration.
Collapse
Affiliation(s)
- Marco Tatullo
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
| | - Bruna Codispoti
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
| | - Gianrico Spagnuolo
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, 80138 Napoli, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| |
Collapse
|
4
|
Abstract
Circadian clocks drive daily rhythms of physiology and behavior in multiple organisms and synchronize these rhythms to environmental cycles of light and temperature. The basic mechanism of the clock consists of a transcription-translation feedback loop, in which key clock proteins negatively regulate their own transcription. Although much of the focus with respect to clock mechanisms has been on the regulation of transcription and on the stability and activity of clock proteins, it is clear that other regulatory processes also have to be involved to explain aspects of clock function. Here, we review the role of alternative splicing in circadian clocks. Starting with a discussion of the Drosophila clock and then extending to other major circadian model systems, we describe how the control of alternative splicing enables organisms to maintain their circadian clocks as well as to respond to environmental inputs, in particular to temperature changes.
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Foley LE, Ling J, Joshi R, Evantal N, Kadener S, Emery P. Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing. eLife 2019; 8:50063. [PMID: 31702555 PMCID: PMC6890465 DOI: 10.7554/elife.50063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.
Collapse
Affiliation(s)
- Lauren E Foley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Jinli Ling
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Radhika Joshi
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | | | - Sebastian Kadener
- Hebrew University of Jerusalem, Jerusalem, Israel.,Brandeis University, Waltham, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
6
|
Shakhmantsir I, Nayak S, Grant GR, Sehgal A. Spliceosome factors target timeless ( tim) mRNA to control clock protein accumulation and circadian behavior in Drosophila. eLife 2018; 7:39821. [PMID: 30516472 PMCID: PMC6281371 DOI: 10.7554/elife.39821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Transcription-translation feedback loops that comprise eukaryotic circadian clocks rely upon temporal delays that separate the phase of active transcription of clock genes, such as Drosophila period (per) and timeless (tim), from negative feedback by the two proteins. However, our understanding of the mechanisms involved is incomplete. Through an RNA interference screen, we found that pre-mRNA processing 4 (PRP4) kinase, a component of the U4/U5.U6 triple small nuclear ribonucleoprotein (tri-snRNP) spliceosome, and other tri-snRNP components regulate cycling of the molecular clock as well as rest:activity rhythms. Unbiased RNA-Sequencing uncovered an alternatively spliced intron in tim whose increased retention upon prp4 downregulation leads to decreased TIM levels. We demonstrate that the splicing of tim is rhythmic with a phase that parallels delayed accumulation of the protein in a 24 hr cycle. We propose that alternative splicing constitutes an important clock mechanism for delaying the daily accumulation of clock proteins, and thereby negative feedback by them. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Chronobiology Program at Penn, Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Soumyashant Nayak
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Gregory R Grant
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Amita Sehgal
- Chronobiology Program at Penn, Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| |
Collapse
|