1
|
Becher H, Charlesworth B. A model of Hill-Robertson interference caused by purifying selection in a nonrecombining genome. Genetics 2025; 230:iyaf048. [PMID: 40120130 PMCID: PMC12059647 DOI: 10.1093/genetics/iyaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
A new approach to modeling the effects of Hill-Robertson interference on levels of adaptation and patterns of variability in a nonrecombining genome or genomic region is described. The model assumes a set of L diallelic sites subject to reversible mutations between beneficial and deleterious alleles, with the same selection coefficient at each site. The assumption of reversibility allows the system to reach a stable statistical equilibrium with respect to the frequencies of deleterious mutations, in contrast to many previous models that assume irreversible mutations to deleterious alleles. The model is therefore appropriate for understanding the long-term properties of nonrecombining genomes such as Y chromosomes, and is applicable to haploid genomes or to diploid genomes when there is intermediate dominance with respect to the effects of mutations on fitness. Approximations are derived for the equilibrium frequencies of deleterious mutations, the effective population size that controls the fixation probabilities of mutations at sites under selection, the nucleotide site diversity at neutral sites located within the nonrecombining region, and the site frequency spectrum for segregating neutral variants. The approximations take into account the effects of linkage disequilibrium on the genetic variance at sites under selection. Comparisons with published and new computer simulation results show that the approximations are sufficiently accurate to be useful, and can provide insights into a wider range of parameter sets than is accessible by simulation. The relevance of the findings to data on nonrecombining genome regions is discussed.
Collapse
Affiliation(s)
- Hannes Becher
- Royal (Dick) School of Veterinary Science, The Roslin Institute, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Brian Charlesworth
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Strütt S, Excoffier L, Peischl S. A generalized structured coalescent for purifying selection without recombination. Genetics 2025; 229:iyaf013. [PMID: 39862229 DOI: 10.1093/genetics/iyaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent. In this study, we extend an existing approach, the fitness-class coalescent, to incorporate arbitrary levels of purifying selection in haploid populations. This model offers a comprehensive framework for exploring the influence of purifying selection in a wide range of demographic scenarios. Moreover, our research reveals potential sources of qualitative and quantitative biases in demographic inference, highlighting the significant risk of attributing genetic patterns to past demographic events rather than purifying selection. This work expands our understanding of the complex interplay between selection, drift, and population dynamics, and how purifying selection distorts demographic inference.
Collapse
Affiliation(s)
- Stefan Strütt
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Fogarty L, Otto SP. Signatures of selection with cultural interference. Proc Natl Acad Sci U S A 2024; 121:e2322885121. [PMID: 39556724 PMCID: PMC11621839 DOI: 10.1073/pnas.2322885121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/01/2024] [Indexed: 11/20/2024] Open
Abstract
Human evolution is intricately linked with culture, which permeates almost all facets of human life from health and reproduction, to the environments in which we live. Nevertheless, our understanding of the ways in which stably transmitted, evolutionarily relevant human cultural traits might interact with the human genome is incomplete, and methods to detect such interactions are limited. Here, we describe some rules of cultural transmission which could pertain to both humans and cultural nonhuman animals that could lead to the formation and maintenance of stable associations between cultural and genetic traits. Next, we show that, in the presence of such associations, a process analogous to genetic hitchhiking is possible in gene-culture systems. These could leave signatures in the human genome similar to, and perhaps indistinguishable from, those left by selection on genetic traits. Finally, we model selective interference between cultural and genetic traits. We show that selective interference between a cultural trait under selection and a genetic trait under selection can reduce the efficacy of natural selection in the human genome, both in terms of the probability of fixation of beneficial alleles and the dynamics of selective sweeps. We then show that the efficiency of selection at genetic loci can, however, be increased in the presence of strong cultural transmission biases. This implies that the signatures of gene-culture interactions in genetic data may be complex and wide-ranging in gene-culture coevolutionary systems.
Collapse
Affiliation(s)
- Laurel Fogarty
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103Leipzig, Germany
| | - Sarah P. Otto
- Biodiversity Centre and Department of Zoology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
4
|
Chase MA, Vilcot M, Mugal CF. The role of recombination dynamics in shaping signatures of direct and indirect selection across the Ficedula flycatcher genome †. Proc Biol Sci 2024; 291:20232382. [PMID: 38228173 DOI: 10.1098/rspb.2023.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Recombination is a central evolutionary process that reshuffles combinations of alleles along chromosomes, and consequently is expected to influence the efficacy of direct selection via Hill-Robertson interference. Additionally, the indirect effects of selection on neutral genetic diversity are expected to show a negative relationship with recombination rate, as background selection and genetic hitchhiking are stronger when recombination rate is low. However, owing to the limited availability of recombination rate estimates across divergent species, the impact of evolutionary changes in recombination rate on genomic signatures of selection remains largely unexplored. To address this question, we estimate recombination rate in two Ficedula flycatcher species, the taiga flycatcher (Ficedula albicilla) and collared flycatcher (Ficedula albicollis). We show that recombination rate is strongly correlated with signatures of indirect selection, and that evolutionary changes in recombination rate between species have observable impacts on this relationship. Conversely, signatures of direct selection on coding sequences show little to no relationship with recombination rate, even when restricted to genes where recombination rate is conserved between species. Thus, using measures of indirect and direct selection that bridge micro- and macro-evolutionary timescales, we demonstrate that the role of recombination rate and its dynamics varies for different signatures of selection.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34293 Montpellier 5, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, 69622 Villeurbanne cedex, France
| |
Collapse
|
5
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Extreme Y chromosome polymorphism corresponds to five male reproductive morphs of a freshwater fish. Nat Ecol Evol 2021; 5:939-948. [PMID: 33958755 DOI: 10.1038/s41559-021-01452-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Loss of recombination between sex chromosomes often depletes Y chromosomes of functional content and genetic variation, which might limit their potential to generate adaptive diversity. Males of the freshwater fish Poecilia parae occur as one of five discrete morphs, all of which shoal together in natural populations where morph frequency has been stable for over 50 years. Each morph uses a different complex reproductive strategy and morphs differ dramatically in colour, body size and mating behaviour. Morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes segregating in the species, which encode the complex male morph characteristics. Here, we examine Y diversity in natural populations of P. parae. Using linked-read sequencing on multiple P. parae females and males of all five morphs, we find that the genetic architecture of the male morphs evolved on the Y chromosome after recombination suppression had occurred with the X. Comparing Y chromosomes between each of the morphs, we show that, although the Ys of the three minor morphs that differ in colour are highly similar, there are substantial amounts of unique genetic material and divergence between the Ys of the three major morphs that differ in reproductive strategy, body size and mating behaviour. Altogether, our results suggest that the Y chromosome is able to overcome the constraints of recombination loss to generate extreme diversity, resulting in five discrete Y chromosomes that control complex reproductive strategies.
Collapse
|
7
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
8
|
Rifkin JL, Beaudry FEG, Humphries Z, Choudhury BI, Barrett SCH, Wright SI. Widespread Recombination Suppression Facilitates Plant Sex Chromosome Evolution. Mol Biol Evol 2021; 38:1018-1030. [PMID: 33095227 PMCID: PMC7947811 DOI: 10.1093/molbev/msaa271] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Felix E G Beaudry
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Zoë Humphries
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Baharul I Choudhury
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
10
|
Beaudry FEG, Barrett SCH, Wright SI. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. Evolution 2019; 74:256-269. [PMID: 31808547 DOI: 10.1111/evo.13892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Empirical evidence from several animal groups suggests sex chromosomes disproportionately contribute to reproductive isolation. This effect may be enhanced when sex chromosomes are associated with turnover of sex determination systems resulting from structural rearrangements to the chromosomes. We investigated these predictions in the dioecious plant Rumex hastatulus, which is composed of populations of two different sex chromosome cytotypes caused by an X-autosome fusion. Using population genomic analyses, we investigated the demographic history of R. hastatulus and explored the contributions of ancestral and neo-sex chromosomes to population genetic divergence. Our study revealed that the cytotypes represent genetically divergent populations with evidence for historical but not contemporary gene flow between them. In agreement with classical predictions, we found that the ancestral X chromosome was disproportionately divergent compared with the rest of the genome. Excess differentiation was also observed on the Y chromosome, even when we used measures of differentiation that control for differences in effective population size. Our estimates of the timing of the origin of neo-sex chromosomes in R. hastatulus are coincident with cessation of gene flow, suggesting that the chromosomal fusion event that gave rise to the origin of the XYY cytotype may have also contributed to reproductive isolation.
Collapse
Affiliation(s)
- Felix E G Beaudry
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
11
|
Braun-Galleani S, Dias JA, Coughlan AY, Ryan AP, Byrne KP, Wolfe KH. Genomic diversity and meiotic recombination among isolates of the biotech yeast Komagataella phaffii (Pichia pastoris). Microb Cell Fact 2019; 18:211. [PMID: 31801527 PMCID: PMC6894112 DOI: 10.1186/s12934-019-1260-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Komagataella phaffii is a yeast widely used in the pharmaceutical and biotechnology industries, and is one of the two species that were previously called Pichia pastoris. However, almost all laboratory work on K. phaffii has utilized strains derived from a single natural isolate, CBS7435. There is little information about the sequence diversity of K. phaffii or the genetic properties of this species. RESULTS We sequenced the genomes of all the known isolates of K. phaffii. We made a genetic cross between derivatives of two isolates that differ at 44,000 single nucleotide polymorphism sites, and used this cross to analyze the rate and landscape of meiotic recombination. We conducted tetrad analysis by making use of the property that K. phaffii haploids do not mate in rich media, which enabled us to isolate and sequence the four types of haploid cell that are present in the colony that forms when a tetra-type ascus germinates. CONCLUSIONS We found that only four distinct natural isolates of K. phaffii exist in public yeast culture collections. The meiotic recombination rate in K. phaffii is approximately 3.5 times lower than in Saccharomyces cerevisiae, with an average of 25 crossovers per meiosis. Recombination is suppressed, and genetic diversity among natural isolates is low, in a region around centromeres that is much larger than the centromeres themselves. Our work lays a foundation for future quantitative trait locus analysis in K. phaffii.
Collapse
Affiliation(s)
| | - Julie A Dias
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | - Aisling Y Coughlan
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Adam P Ryan
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kevin P Byrne
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H Wolfe
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Hasan AR, Duggal JK, Ness RW. Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2019; 224:1339-1348. [PMID: 31222749 DOI: 10.1111/nph.16003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jaspreet K Duggal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
13
|
Li X, Veltsos P, Cossard GG, Gerchen J, Pannell JR. YY males of the dioecious plant Mercurialis annua are fully viable but produce largely infertile pollen. THE NEW PHYTOLOGIST 2019; 224:1394-1404. [PMID: 31230365 PMCID: PMC6852596 DOI: 10.1111/nph.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 05/07/2023]
Abstract
The suppression of recombination during sex-chromosome evolution is thought to be favoured by linkage between the sex-determining locus and sexually antagonistic loci, and leads to the degeneration of the chromosome restricted to the heterogametic sex. Despite substantial evidence for genetic degeneration at the sequence level, the phenotypic effects of the earliest stages of sex-chromosome evolution are poorly known. Here, we compare the morphology, viability and fertility between XY and YY individuals produced by crossing seed-producing males in the dioecious plant Mercurialis annua, which has young sex chromosomes with limited X-Y sequence divergence. We found no significant difference in viability or vegetative morphology between XY and YY males. However, electron microscopy revealed clear differences in pollen anatomy, and YY males were significantly poorer sires in competition with their XY counterparts. Our study suggests either that the X chromosome is required for full male fertility in M. annua, or that male fertility is sensitive to the dosage of relevant Y-linked genes. We discuss the possibility that the maintenance of male-fertility genes on the X chromosome might have been favoured in recent population expansions that selected for the ability of females to produce pollen in the absence of males.
Collapse
Affiliation(s)
- Xinji Li
- Department of Ecology and EvolutionUniversity of Lausanne1015LausanneSwitzerland
| | - Paris Veltsos
- Department of BiologyIndiana University1001 East Third StreetBloomingtonIN47405USA
| | - Guillaume G. Cossard
- Integrative Biology of Marine Organisms DepartmentStation Biologique CNRSPlace Georges TeissierRoscoff29688France
| | - Jörn Gerchen
- Department of Ecology and EvolutionUniversity of Lausanne1015LausanneSwitzerland
| | - John R. Pannell
- Department of Ecology and EvolutionUniversity of Lausanne1015LausanneSwitzerland
| |
Collapse
|
14
|
The Effects on Neutral Variability of Recurrent Selective Sweeps and Background Selection. Genetics 2019; 212:287-303. [PMID: 30923166 DOI: 10.1534/genetics.119.301951] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Levels of variability and rates of adaptive evolution may be affected by hitchhiking, the effect of selection on evolution at linked sites. Hitchhiking can be caused either by "selective sweeps" or by background selection, involving the spread of new favorable alleles or the elimination of deleterious mutations, respectively. Recent analyses of population genomic data have fitted models where both these processes act simultaneously, to infer the parameters of selection. Here, we investigate the consequences of relaxing a key assumption of some of these studies, that the time occupied by a selective sweep is negligible compared with the neutral coalescent time. We derive a new expression for the expected level of neutral variability in the presence of recurrent selective sweeps and background selection. We also derive approximate integral expressions for the effects of recurrent selective sweeps. The accuracy of the theoretical predictions was tested against multilocus simulations, with selection, recombination, and mutation parameters that are realistic for Drosophila melanogaster In the presence of crossing over, there is approximate agreement between the theoretical and simulation results. We show that the observed relationships between the rate of crossing over, and the level of synonymous site diversity and rate of adaptive evolution in Drosophila are probably mainly caused by background selection, whereas selective sweeps and population size changes are needed to produce the observed distortions of the site frequency spectrum.
Collapse
|
15
|
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. Evolution of Young Sex Chromosomes in Two Dioecious Sister Plant Species with Distinct Sex Determination Systems. Genome Biol Evol 2019; 11:350-361. [PMID: 30649306 PMCID: PMC6364797 DOI: 10.1093/gbe/evz001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections. In the latter, sex chromosomes could be younger than in the section Melandrium, based on phylogenetic studies and as no heteromorphic sex chromosomes have been detected. This section might also exhibit lability in sex determination, because male heterogamy and female heterogamy have been suggested to occur. In this study, we investigated the sex determination system of two dioecious species in the section Otites (Silene otites and its close relative Silene pseudotites). Applying the new probabilistic method SEX-DETector on RNA-seq data from cross-controlled progenies, we inferred their most likely sex determination system and a list of putative autosomal and sex-linked contigs. We showed that the two phylogenetically close species differed in their sex determination system (XY versus ZW) with sex chromosomes that derived from two different pairs of autosomes. We built a genetic map of the sex chromosomes and showed that both pairs exhibited a large region with lack of recombination. However, the sex-limited chromosomes exhibited no strong degeneration. Finally, using the “ancestral” autosomal expression of sex-linked orthologs of nondioecious S. nutans, we found a slight signature of dosage compensation in the heterogametic females of S. otites.
Collapse
Affiliation(s)
- Hélène Martin
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Fantin Carpentier
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Ecologie Systématique Evolution, Université Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Eric Schmitt
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
16
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
17
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
18
|
Sandler G, Beaudry FEG, Barrett SCH, Wright SI. The effects of haploid selection on Y chromosome evolution in two closely related dioecious plants. Evol Lett 2018; 2:368-377. [PMID: 30283688 PMCID: PMC6121804 DOI: 10.1002/evl3.60] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 01/21/2023] Open
Abstract
The evolution of sex chromosomes is usually considered to be driven by sexually antagonistic selection in the diploid phase. However, selection during the haploid gametic phase of the lifecycle has recently received theoretical attention as possibly playing a central role in sex chromosome evolution, especially in plants where gene expression in the haploid phase is extensive. In particular, male‐specific haploid selection might favor the linkage of pollen beneficial alleles to male sex determining regions on incipient Y chromosomes. This linkage might then allow such alleles to further specialize for the haploid phase. Purifying haploid selection is also expected to slow the degeneration of Y‐linked genes expressed in the haploid phase. Here, we examine the evolution of gene expression in flower buds and pollen of two species of Rumex to test for signatures of haploid selection acting during plant sex chromosome evolution. We find that genes with high ancestral pollen expression bias occur more often on sex chromosomes than autosomes and that genes on the Y chromosome are more likely to become enriched for pollen expression bias. We also find that genes with low expression in pollen are more likely to be lost from the Y chromosome. Our results suggest that sex‐specific haploid selection during the gametophytic stage of the lifecycle may be a major contributor to several features of plant sex chromosome evolution.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Felix E G Beaudry
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| |
Collapse
|
19
|
Avia K, Lipinska AP, Mignerot L, Montecinos AE, Jamy M, Ahmed S, Valero M, Peters AF, Cock JM, Roze D, Coelho SM. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus. Genes (Basel) 2018; 9:E286. [PMID: 29882839 PMCID: PMC6027523 DOI: 10.3390/genes9060286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.
Collapse
Affiliation(s)
- Komlan Avia
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Alejandro E Montecinos
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | - Mahwash Jamy
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Sophia Ahmed
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| |
Collapse
|
20
|
Beaudry FEG, Barrett SCH, Wright SI. Genomic Loss and Silencing on the Y Chromosomes of Rumex. Genome Biol Evol 2017; 9:3345-3355. [PMID: 29211839 PMCID: PMC5737746 DOI: 10.1093/gbe/evx254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Across many unrelated lineages of plants and animals, Y chromosomes show a recurrent pattern of gene degeneration and loss, but the relative importance of inefficient selection, adaptive gene silencing, and neutral genetic drift in causing degeneration remain poorly understood. Here, we use next-generation genome and transcriptome sequencing to investigate patterns of ongoing Y chromosome degeneration in two annual plant species of Rumex (Polygonaceae) differing in their degree of degeneration and sex chromosome heteromorphism. We find evidence for both gene loss as well as silencing in these young plant sex chromosomes. Our analyses revealed significantly more gene deletion relative to silencing in R. rothschildianus, which has had a larger nonrecombining region for a longer period than R. hastatulus, consistent with this system being at a more advanced stage of degeneration. Intra- and interspecific comparisons of genomic coverage and heterozygosity indicated that loss of expression precedes gene deletion, implying that the final stages of mutation accumulation and gene loss may often occur neutrally. We found no evidence for adaptive silencing of genes that have lost expression. Our results suggest that the initial spread of deleterious regulatory variants and/or epigenetic silencing may be an important driver of early degeneration of Y chromosomes.
Collapse
Affiliation(s)
- Felix E G Beaudry
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Spencer C H Barrett
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada
| |
Collapse
|