1
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Borrie MS, Kraycer PM, Gartenberg MR. Transcription-Driven Translocation of Cohesive and Non-Cohesive Cohesin In Vivo. Mol Cell Biol 2023; 43:254-268. [PMID: 37178128 PMCID: PMC10251789 DOI: 10.1080/10985549.2023.2199660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase. In conjunction with a cofactor, the complex also extrudes DNA loops in an ATP-dependent manner. In this study we examine transcription-driven translocation of cohesin under various conditions in yeast. To this end, obstacles of increasing size were tethered to DNA to act as roadblocks to complexes mobilized by an inducible gene. The obstacles were built from a GFP-lacI core fused to one or more mCherries. A chimera with four mCherries blocked cohesin passage in late G1. During M phase, the threshold barrier depended on the state of cohesion: non-cohesive complexes were also blocked by four mCherries whereas cohesive complexes were blocked by as few as three mCherries. Furthermore cohesive complexes that were stalled at obstacles, in turn, blocked the passage of non-cohesive complexes. That synthetic barriers capture mobilized cohesin demonstrates that transcription-driven complexes translocate processively in vivo. Together, this study reveals unexplored limitations to cohesin movement on chromosomes.
Collapse
Affiliation(s)
- Melinda S. Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Paul M. Kraycer
- Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marc R. Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Member of The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Boardman K, Xiang S, Chatterjee F, Mbonu U, Guacci V, Koshland D. A model for Scc2p stimulation of cohesin's ATPase and its inhibition by acetylation of Smc3p. Genes Dev 2023; 37:277-290. [PMID: 37055084 PMCID: PMC10153460 DOI: 10.1101/gad.350278.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.
Collapse
Affiliation(s)
- Kevin Boardman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Siheng Xiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Fiona Chatterjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Udochi Mbonu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
4
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
5
|
Umbach A, Maule G, Kheir E, Cutarelli A, Foglia M, Guarrera L, Fava LL, Conti L, Garattini E, Terao M, Cereseto A. Generation of corrected hiPSC clones from a Cornelia de Lange Syndrome (CdLS) patient through CRISPR-Cas-based technology. Stem Cell Res Ther 2022; 13:440. [PMID: 36056433 PMCID: PMC9438151 DOI: 10.1186/s13287-022-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60–70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to find a cure. Among therapeutic possibilities are genome editing strategies based on CRISPR-Cas technology. Methods A comparative analysis was performed to test the most recent CRISPR-Cas technologies comprising base- and prime-editors which introduce modifications without DNA cleavages and compared with sequence substitution approaches through homology directed repair (HDR) induced by Cas9 nuclease activity. The HDR method that was found more efficient was applied to repair a CdLS-causing mutation in the NIPBL gene. Human-induced pluripotent stem cells (hiPSCs) derived from a CdLS patient carrying the c.5483G > A mutation in the NIPBL were modified through HDR to generate isogenic corrected clones. Results This study reports an efficient method to repair the NIPBL gene through HDR mediated by CRISPR-Cas and induced with a compound (NU7441) inhibiting non-homologous end joining (NHEJ) repair. This sequence repair method allowed the generation of isogenic wild-type hiPSCs clones with regular karyotype and preserved pluripotency. Conclusions CdLS cellular models were generated which will facilitate the investigation of the disease molecular determinants and the identification of therapeutic targets. In particular, the hiPSC-based cellular models offer the paramount advantage to study the tissue differentiation stages which are altered in the CdLS clinical development. Importantly, the hiPSCs that were generated are isogenic thus providing the most controlled experimental set up between wild-type and mutated conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03135-0.
Collapse
Affiliation(s)
- Alessandro Umbach
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Giulia Maule
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Eyemen Kheir
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | | | - Marika Foglia
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Luca Guarrera
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Luca L Fava
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Luciano Conti
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Cereseto
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.
| |
Collapse
|
6
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
7
|
Wang J, Bando M, Shirahige K, Nakato R. Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nat Commun 2022; 13:3218. [PMID: 35680859 PMCID: PMC9184728 DOI: 10.1038/s41467-022-30792-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/14/2022] [Indexed: 12/19/2022] Open
Abstract
Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashige Bando
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
CCAR2 controls mitotic progression through spatiotemporal regulation of Aurora B. Cell Death Dis 2022; 13:534. [PMID: 35672287 PMCID: PMC9174277 DOI: 10.1038/s41419-022-04990-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
CCAR2 (cell cycle and apoptosis regulator 2) is a multifaceted protein involved in cell survival and death following cytotoxic stress. However, little is known about the physiological functions of CCAR2 in regulating cell proliferation in the absence of external stimuli. The present study shows that CCAR2-deficient cells possess multilobulated nuclei, suggesting a defect in cell division. In particular, the duration of mitotic phase was perturbed. This disturbance of mitotic progression resulted from premature loss of cohesion with the centromere, and inactivation of the spindle assembly checkpoint during prometaphase and metaphase. It resulted in the formation of lagging chromosomes during anaphase, leading ultimately to the activation of the abscission checkpoint to halt cytokinesis. The CCAR2-dependent mitotic progression was related to spatiotemporal regulation of active Aurora B. In conclusion, the results suggest that CCAR2 governs mitotic events, including proper chromosome segregation and cytokinetic division, to maintain chromosomal stability.
Collapse
|
9
|
Li KW, Lu MS, Iwamoto Y, Drubin DG, Pedersen RTA. A preferred sequence for organelle inheritance during polarized cell growth. J Cell Sci 2021; 134:272417. [PMID: 34622919 PMCID: PMC8627559 DOI: 10.1242/jcs.258856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Some organelles cannot be synthesized anew, so they are segregated into daughter cells during cell division. In Saccharomyces cerevisiae, daughter cells bud from mother cells and are populated by organelles inherited from the mothers. To determine whether this organelle inheritance occurs in a stereotyped manner, we tracked organelles using fluorescence microscopy. We describe a program for organelle inheritance in budding yeast. The cortical endoplasmic reticulum (ER) and peroxisomes are inherited concomitantly with bud emergence. Next, vacuoles are inherited in small buds, followed closely by mitochondria. Finally, the nucleus and perinuclear ER are inherited when buds have nearly reached their maximal size. Because organelle inheritance timing correlates with bud morphology, which is coupled to the cell cycle, we tested whether disrupting the cell cycle alters organelle inheritance order. By arresting cell cycle progression but allowing continued bud growth, we determined that organelle inheritance still occurs when DNA replication is blocked, and that the general inheritance order is maintained. Thus, organelle inheritance follows a preferred order during polarized cell division and does not require completion of S-phase. Summary: Organelles are interconnected by contact sites, but they must be inherited from mother cells into buds during budding yeast mitosis. We report that this process occurs in a preferred sequence.
Collapse
Affiliation(s)
- Kathryn W Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michelle S Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Garcia P, Fernandez-Hernandez R, Cuadrado A, Coca I, Gomez A, Maqueda M, Latorre-Pellicer A, Puisac B, Ramos FJ, Sandoval J, Esteller M, Mosquera JL, Rodriguez J, Pié J, Losada A, Queralt E. Disruption of NIPBL/Scc2 in Cornelia de Lange Syndrome provokes cohesin genome-wide redistribution with an impact in the transcriptome. Nat Commun 2021; 12:4551. [PMID: 34315879 PMCID: PMC8316422 DOI: 10.1038/s41467-021-24808-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare disease affecting multiple organs and systems during development. Mutations in the cohesin loader, NIPBL/Scc2, were first described and are the most frequent in clinically diagnosed CdLS patients. The molecular mechanisms driving CdLS phenotypes are not understood. In addition to its canonical role in sister chromatid cohesion, cohesin is implicated in the spatial organization of the genome. Here, we investigate the transcriptome of CdLS patient-derived primary fibroblasts and observe the downregulation of genes involved in development and system skeletal organization, providing a link to the developmental alterations and limb abnormalities characteristic of CdLS patients. Genome-wide distribution studies demonstrate a global reduction of NIPBL at the NIPBL-associated high GC content regions in CdLS-derived cells. In addition, cohesin accumulates at NIPBL-occupied sites at CpG islands potentially due to reduced cohesin translocation along chromosomes, and fewer cohesin peaks colocalize with CTCF.
Collapse
Affiliation(s)
- Patricia Garcia
- Cell Cycle Group, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, Barcelona, Spain.
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
| | - Rita Fernandez-Hernandez
- Cell Cycle Group, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, Barcelona, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ignacio Coca
- Research and Development Department, qGenomics Laboratory, Esplugues de Llobregat, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Grup de Recerca de Reumatologia, Parc Científic de Barcelona, Barcelona, Spain
| | - Maria Maqueda
- Bioinformatics Unit, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, Barcelona, Spain
| | - Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IISAragon, Zaragoza, Spain
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IISAragon, Zaragoza, Spain
| | - Feliciano J Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IISAragon, Zaragoza, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit (UByMP) and Epigenomics Core Facility, Health Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Jose Luis Mosquera
- Bioinformatics Unit, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, Barcelona, Spain
| | - Jairo Rodriguez
- Research and Development Department, qGenomics Laboratory, Esplugues de Llobregat, Spain
| | - J Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IISAragon, Zaragoza, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, Barcelona, Spain.
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.
| |
Collapse
|
11
|
Abstract
Cohesin helps mediate sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. We exploited proximity-dependent labeling to define the in vivo interactions of cohesin domains with DNA or with other cohesin domains that lie within the same or in different cohesin complexes. Our results suggest that both cohesin's head and hinge domains are proximal to DNA, and cohesin structure is dynamic with differential folding of its coiled coil regions to generate butterfly confirmations. This method also reveals that cohesins form ordered clusters on and off DNA. The levels of cohesin clusters and their distribution on chromosomes are cell cycle-regulated. Cohesin clustering is likely necessary for cohesion maintenance because clustering and maintenance uniquely require the same subset of cohesin domains and the auxiliary cohesin factor Pds5p. These conclusions provide important new mechanistic and biological insights into the architecture of the cohesin complex, cohesin-cohesin interactions, and cohesin's tethering and loop-extruding activities.
Collapse
Affiliation(s)
- Siheng Xiang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Costantino L, Hsieh THS, Lamothe R, Darzacq X, Koshland D. Cohesin residency determines chromatin loop patterns. eLife 2020; 9:e59889. [PMID: 33170773 PMCID: PMC7655110 DOI: 10.7554/elife.59889] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
13
|
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
14
|
Zuilkoski CM, Skibbens RV. PCNA promotes context-specific sister chromatid cohesion establishment separate from that of chromatin condensation. Cell Cycle 2020; 19:2436-2450. [PMID: 32926661 PMCID: PMC7553509 DOI: 10.1080/15384101.2020.1804221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
Abstract
Cellular genomes undergo various structural changes that include cis tethering (the tethering together of two loci within a single DNA molecule), which promotes chromosome condensation and transcriptional activation, and trans tethering (the tethering together of two DNA molecules), which promotes sister chromatid cohesion and DNA repair. The protein complex termed cohesin promotes both cis and trans forms of DNA tethering, but the extent to which these cohesin functions occur in temporally or spatially defined contexts remains largely unknown. Prior studies indicate that DNA polymerase sliding clamp PCNA recruits cohesin acetyltransferase Eco1, suggesting that sister chromatid cohesion is established in the context of the DNA replication fork. In support of this model, elevated levels of PCNA rescue the temperature growth and cohesion defects exhibited by eco1 mutant cells. Here, we test whether Eco1-dependent chromatin condensation is also promoted in the context of this DNA replication fork component. Our results reveal that overexpressed PCNA does not promote DNA condensation in eco1 mutant cells, even though Smc3 acetylation levels are increased. We further provide evidence that replication fork-associated E3 ligase impacts on Eco1 are more complex that previously described. In combination, the data suggests that Eco1 acetylates Smc3 and thus promotes sister chromatid cohesion in context of the DNA replication fork, whereas a distinct cohesin population participates in chromatin condensation outside the context of the DNA replication fork.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| |
Collapse
|
15
|
Hong S, Joo JH, Yun H, Kleckner N, Kim KP. Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase. Nucleic Acids Res 2020; 47:11691-11708. [PMID: 31617566 PMCID: PMC7145551 DOI: 10.1093/nar/gkz903] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
We have explored the meiotic roles of cohesin modulators Pds5 and Rad61/Wapl, in relation to one another, and to meiotic kleisin Rec8, for homolog pairing, all physically definable steps of recombination, prophase axis length and S-phase progression, in budding yeast. We show that Pds5 promotes early steps of recombination and thus homolog pairing, and also modulates axis length, with both effects independent of a sister chromatid. [Pds5+Rec8] promotes double-strand break formation, maintains homolog bias for crossover formation and promotes S-phase progression. Oppositely, the unique role of Rad61/Wapl is to promote non-crossover recombination by releasing [Pds5+Rec8]. For this effect, Rad61/Wapl probably acts to maintain homolog bias by preventing channeling into sister interactions. Mysteriously, each analyzed molecule has one role that involves neither of the other two. Overall, the presented findings suggest that Pds5's role in maintenance of sister chromatid cohesion during the mitotic prophase-analogous stage of G2/M is repurposed during meiosis prophase to promote interactions between homologs.
Collapse
Affiliation(s)
- Soogil Hong
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jeong H Joo
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Hyeseon Yun
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
16
|
Skuodas S, Clemons A, Hayes M, Goll A, Zora B, Weeks DL, Phillips BT, Fassler JS. The ABCF gene family facilitates disaggregation during animal development. Mol Biol Cell 2020; 31:1324-1345. [PMID: 32320318 PMCID: PMC7353142 DOI: 10.1091/mbc.e19-08-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.
Collapse
Affiliation(s)
- Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Michael Hayes
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Ashley Goll
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Betul Zora
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
17
|
Guacci V, Chatterjee F, Robison B, Koshland DE. Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA. eLife 2019; 8:e46347. [PMID: 31162048 PMCID: PMC6579514 DOI: 10.7554/elife.46347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.
Collapse
Affiliation(s)
- Vincent Guacci
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Chatterjee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brett Robison
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Douglas E Koshland
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
18
|
Perez S, Gevor M, Davidovich A, Kaspi A, Yamin K, Domovich T, Meirson T, Matityahu A, Brody Y, Stemmer SM, El-Osta A, Haviv I, Onn I, Gal-Tanamy M. Dysregulation of the cohesin subunit RAD21 by Hepatitis C virus mediates host-virus interactions. Nucleic Acids Res 2019; 47:2455-2471. [PMID: 30698808 PMCID: PMC6412124 DOI: 10.1093/nar/gkz052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/30/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCV possesses an RNA genome and its replication is confined to the cytoplasm. Yet, infection with HCV leads to global changes in gene expression, and chromosomal instability (CIN) in the host cell. The mechanisms by which the cytoplasmic virus affects these nuclear processes are elusive. Here, we show that HCV modulates the function of the Structural Maintenance of Chromosome (SMC) protein complex, cohesin, which tethers remote regions of chromatin. We demonstrate that infection of hepatoma cells with HCV leads to up regulation of the expression of the RAD21 cohesin subunit and changes cohesin residency on the chromatin. These changes regulate the expression of genes associated with virus-induced pathways. Furthermore, siRNA downregulation of viral-induced RAD21 reduces HCV infection. During mitosis, HCV infection induces hypercondensation of chromosomes and the appearance of multi-centrosomes. We provide evidence that the underlying mechanism involves the viral NS3/4 protease and the cohesin regulator, WAPL. Altogether, our results provide the first evidence that HCV induces changes in gene expression and chromosome structure of infected cells by modulating cohesin.
Collapse
Affiliation(s)
- Shira Perez
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Gevor
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ateret Davidovich
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Katreena Yamin
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tom Domovich
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yehuda Brody
- The Broad institute of Harvard and MIT, Cambridge, MA, USA
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Beilinson Campus, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Izhak Haviv
- Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|