1
|
Yamakawa T, Yuslimatin Mujizah E, Matsuno K. Notch Signalling Under Maternal-to-Zygotic Transition. Fly (Austin) 2022; 16:347-359. [PMID: 36346359 PMCID: PMC9645253 DOI: 10.1080/19336934.2022.2139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The development of all animal embryos is initially directed by the gene products supplied by their mothers. With the progression of embryogenesis, the embryo's genome is activated to command subsequent developments. This transition, which has been studied in many model animals, is referred to as the Maternal-to-Zygotic Transition (MZT). In many organisms, including flies, nematodes, and sea urchins, genes involved in Notch signaling are extensively influenced by the MZT. This signaling pathway is highly conserved across metazoans; moreover, it regulates various developmental processes. Notch signaling defects are commonly associated with various human diseases. The maternal contribution of its factors was first discovered in flies. Subsequently, several genes were identified from mutant embryos with a phenotype similar to Notch mutants only upon the removal of the maternal contributions. Studies on these maternal genes have revealed various novel steps in the cascade of Notch signal transduction. Among these genes, pecanex and almondex have been functionally characterized in recent studies. Therefore, in this review, we will focus on the roles of these two maternal genes in Notch signaling and discuss future research directions on its maternal function.
Collapse
Affiliation(s)
- Tomoko Yamakawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan,CONTACT Tomoko Yamakawa Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Moreno OM, Sánchez AI, Herreño A, Giraldo G, Suárez F, Prieto JC, Clavijo AS, Olaya M, Vargas Y, Benítez J, Surallés J, Rojas A. Phenotypic Characteristics and Copy Number Variants in a Cohort of Colombian Patients with VACTERL Association. Mol Syndromol 2021; 11:271-283. [PMID: 33505230 DOI: 10.1159/000510910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
VACTERL association (OMIM 192350) is a heterogeneous clinical condition characterized by congenital structural defects that include at least 3 of the following features: vertebral abnormalities, anal atresia, heart defects, tracheoesophageal fistula, renal malformations, and limb defects. The nonrandom occurrence of these malformations and some familial cases suggest a possible association with genetic factors such as chromosomal alterations, gene mutations, and inherited syndromes such as Fanconi anemia (FA). In this study, the clinical phenotype and its relationship with the presence of chromosomal abnormalities and FA were evaluated in 18 patients with VACTERL association. For this, a G-banded karyotype, array-comparative genomic hybridization, and chromosomal fragility test for FA were performed. All patients (10 female and 8 male) showed a broad clinical spectrum: 13 (72.2%) had vertebral abnormalities, 8 (44.4%) had anal atresia, 14 (77.8%) had heart defects, 8 (44.4%) had esophageal atresia, 10 (55.6%) had renal abnormalities, and 10 (55.6%) had limb defects. Chromosomal abnormalities and FA were ruled out. In 2 cases, the finding of microalterations, namely del(15)(q11.2) and dup(17)(q12), explained the phenotype; in 8 cases, copy number variations were classified as variants of unknown significance and as not yet described in VACTERL. These variants comprise genes related to important cellular functions and embryonic development.
Collapse
Affiliation(s)
- Olga M Moreno
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana I Sánchez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.,Departamento Materno Infantil, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.,Centro Médico Imbanaco de Cali, Cali, Colombia
| | - Angélica Herreño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gustavo Giraldo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Suárez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.,Unidad de Genética Medica, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Juan Carlos Prieto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana Shaia Clavijo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mercedes Olaya
- Servicio de Patología, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Yaris Vargas
- Servicio de Pediatría, Neonatología, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Javier Benítez
- CNIO: Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Jordi Surallés
- Departamento de Genética y Microbiología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
3
|
Chen Y, Guo Y, Chen H, Ma F. Long Non-coding RNA Expression Profiling Identifies a Four-Long Non-coding RNA Prognostic Signature for Isocitrate Dehydrogenase Mutant Glioma. Front Neurol 2020; 11:573264. [PMID: 33329315 PMCID: PMC7714930 DOI: 10.3389/fneur.2020.573264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Isocitrate dehydrogenase (IDH) mutant is one of the most robust and important genetic aberrations in glioma. However, the underlying regulation mechanism of long non-coding RNA (lncRNA) in IDH mutant glioma has not been systematically portrayed. Methods:In this work, 775 IDH mutant glioma samples with transcriptome data, including 167 samples from the Chinese Glioma Genome Atlas (CGGA) RNAseq dataset, 390 samples from The Cancer Genome Atlas (TCGA) dataset, 79 samples from GSE16011 dataset, and 139 samples from CGGA microarray dataset, were enrolled. R language and GraphPad Prism software were applied for the statistical analysis and graphical work. Results: By comparing the differentially lncRNA genes between IDH mutant and IDH wild-type glioma samples, a four-lncRNA (JAG1, PVT1, H19, and HAR1A) signature was identified in IDH mutant glioma patients. The signature model was established based on the expression level and the regression coefficient of the four lncRNA genes. IDH mutant glioma samples could be successfully stratified into low-risk and high-risk groups in CGGA RNAseq, TCGA, GSE16011, and CGGA microarray databases. Meanwhile, multivariate Cox analysis showed that the four-lncRNA signature was an independent prognostic biomarker after adjusting for other clinicopathologic factors. Moreover, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the immune response and cellular metabolism were significantly associated with the four-lncRNA risk signature. Conclusion: Taken together, the four-lncRNA risk signature was identified as a novel prognostic marker for IDH mutant glioma patients and may potentially lead to improvements in the lives of glioma patients.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fengjin Ma
- Department of Intensive Care Unit, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|