1
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Hu J, Crickard JB. All who wander are not lost: the search for homology during homologous recombination. Biochem Soc Trans 2024; 52:367-377. [PMID: 38323621 PMCID: PMC10903458 DOI: 10.1042/bst20230705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that functions to maintain genomic integrity. A vital component of the HR reaction is the identification of template DNA to be used during repair. This occurs through a mechanism known as the homology search. The homology search occurs in two steps: a collision step in which two pieces of DNA are forced to collide and a selection step that results in homologous pairing between matching DNA sequences. Selection of a homologous template is facilitated by recombinases of the RecA/Rad51 family of proteins in cooperation with helicases, translocases, and topoisomerases that determine the overall fidelity of the match. This menagerie of molecular machines acts to regulate critical intermediates during the homology search. These intermediates include recombinase filaments that probe for short stretches of homology and early strand invasion intermediates in the form of displacement loops (D-loops) that stabilize paired DNA. Here, we will discuss recent advances in understanding how these specific intermediates are regulated on the molecular level during the HR reaction. We will also discuss how the stability of these intermediates influences the ultimate outcomes of the HR reaction. Finally, we will discuss recent physiological models developed to explain how the homology search protects the genome.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - J. Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
3
|
Sapède E, Sugawara N, Tyers RG, Nakajima Y, Afreen MF, Romero Escobar J, Haber JE. Nonhomologous tails direct heteroduplex rejection and mismatch correction during single-strand annealing in Saccharomyces cerevisiae. PLoS Genet 2024; 20:e1010527. [PMID: 38315739 PMCID: PMC10868807 DOI: 10.1371/journal.pgen.1010527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2024] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Single-strand annealing (SSA) is initiated when a double strand break (DSB) occurs between two flanking repeated sequences, resulting in a deletion that leaves a single copy of the repeat. We studied budding yeast strains carrying two 200-bp URA3 sequences separated by 2.6 kb of spacer DNA (phage lambda) in which a site-specific DSB can be created by HO or Cas9 endonucleases. Repeat-mediated deletion requires removal of long 3'-ended single-stranded tails (flaps) by Rad1-Rad10 with the assistance of Msh2-Msh3, Saw1 and Slx4. A natural 3% divergence of unequally spaced heterologies between these repeats (designated F and A) causes a significant reduction in the frequency of SSA repair. This decrease is caused by heteroduplex rejection in which mismatches (MMs) in the annealed intermediate are recognized by the MutS (Msh2 and Msh6) components of the MM repair (MMR) pathway coupled to unwinding of the duplex by the Sgs1-Rmi1-Top3 helicase. MutL homologs, Mlh1-Pms1 (MutL), are not required for rejection but play their expected role in mismatch correction. Remarkably, heteroduplex rejection is very low in strains where the divergent repeats were immediately adjacent (Tailless strains) and the DSB was induced by Cas9. These results suggest that the presence of nonhomologous tails strongly stimulates heteroduplex rejection in SSA. DNA sequencing analysis of SSA products from the FA Tailed strain showed a gradient of correction favoring the sequence opposite each 3' end of the annealed strand. Mismatches located in the center of the repair intermediate were corrected by Msh2-Msh6 mediated mismatch correction, while correction of MMs at the extremity of the SSA intermediate often appears to use a different mechanism, possibly by 3' nonhomologous tail removal that includes part of the homologous sequence. In contrast, in FA Tailless strains there was a uniform repair of the MMs across the repeat. A distinctive pattern of correction was found in the absence of MSH2, in both Tailed and Tailless strains, different from the spectrum seen in a msh3Δ msh6Δ double mutant. Previous work has shown that SSA is Rad51-independent but dependent on the strand annealing activity of Rad52. However Rad52 becomes dispensable in a Tailless construct where the DSB is induced by Cas9 or in transformation of a plasmid where SSA occurs in the absence of nonhomologous tails.
Collapse
Affiliation(s)
- Elena Sapède
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Neal Sugawara
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Randall G. Tyers
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yuko Nakajima
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mosammat Faria Afreen
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jesselin Romero Escobar
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
4
|
Chakraborty U, Shen ZJ, Tyler J. Chaperoning histones at the DNA repair dance. DNA Repair (Amst) 2021; 108:103240. [PMID: 34687987 DOI: 10.1016/j.dnarep.2021.103240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Unlike all other biological molecules that are degraded and replaced if damaged, DNA must be repaired as chromosomes cannot be replaced. Indeed, DNA endures a wide variety of structural damage that need to be repaired accurately to maintain genomic stability and proper functioning of cells and to prevent mutation leading to disease. Given that the genome is packaged into chromatin within eukaryotic cells, it has become increasingly evident that the chromatin context of DNA both facilitates and regulates DNA repair processes. In this review, we discuss mechanisms involved in removal of histones (chromatin disassembly) from around DNA lesions, by histone chaperones and chromatin remodelers, that promotes accessibility of the DNA repair machinery. We also elaborate on how the deposition of core histones and specific histone variants onto DNA (chromatin assembly) during DNA repair promotes repair processes, the role of histone post translational modifications in these processes and how chromatin structure is reestablished after DNA repair is complete.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jessica Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
6
|
Mackenroth B, Alani E. Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA Repair (Amst) 2021; 97:103018. [PMID: 33285474 PMCID: PMC8486310 DOI: 10.1016/j.dnarep.2020.103018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023]
Abstract
Homologous recombination (HR), considered the highest fidelity DNA double-strand break (DSB) repair pathway that a cell possesses, is capable of repairing multiple DSBs without altering genetic information. However, in "last resort" scenarios, HR can be directed to low fidelity subpathways which often use non-allelic donor templates. Such repair mechanisms are often highly mutagenic and can also yield chromosomal rearrangements and/or deletions. While the choice between HR and its less precise counterpart, non-homologous end joining (NHEJ), has received much attention, less is known about how cells manage and prioritize HR subpathways. In this review, we describe work focused on how chromatin and nuclear architecture orchestrate subpathway choice and repair template usage to maintain genome integrity without sacrificing cell survival. Understanding the relationships between nuclear architecture and recombination mechanics will be critical to understand these cellular repair decisions.
Collapse
Affiliation(s)
- Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States.
| |
Collapse
|