1
|
Das A, Subrahmanian N, Gabilly ST, Andrianova EP, Zhulin IB, Motohashi K, Hamel PP. Two disulfide-reducing pathways are required for the maturation of plastid c-type cytochromes in Chlamydomonas reinhardtii. Genetics 2023; 225:iyad155. [PMID: 37595062 PMCID: PMC10550313 DOI: 10.1093/genetics/iyad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 08/20/2023] Open
Abstract
In plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function. In Chlamydomonas reinhardtii, loss of CCS4 or CCS5 yields a partial cytochrome f assembly defect. Here, we report that the ccs4ccs5 double mutant displays a synthetic photosynthetic defect characterized by a complete loss of holocytochrome f assembly. This defect is chemically corrected by reducing agents, confirming the placement of CCS4 and CCS5 in a reducing pathway. CCS4-like proteins occur in the green lineage, and we show that HCF153, a distant ortholog from Arabidopsis thaliana, can substitute for Chlamydomonas CCS4. Dominant suppressor mutations mapping to the CCS4 gene were identified in photosynthetic revertants of the ccs4ccs5 mutants. The suppressor mutations yield changes in the stroma-facing domain of CCS4 that restore holocytochrome f assembly above the residual levels detected in ccs5. Because the CCDA protein accumulation is decreased specifically in the ccs4 mutant, we hypothesize the suppressor mutations enhance the supply of reducing power through CCDA in the absence of CCS5. We discuss the operation of a CCS5-dependent and a CCS5-independent pathway controlling the redox status of the heme-binding cysteines of apocytochrome f.
Collapse
Affiliation(s)
- Ankita Das
- Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
- Molecular Genetics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nitya Subrahmanian
- Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Stéphane T Gabilly
- Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ekaterina P Andrianova
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ken Motohashi
- Department of Frontier Life Sciences, Kyoto Sangyo University, Karigamo Motoyama, Kita-ku, Kyoto 603-8047, Japan
| | - Patrice Paul Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Zhang ZY, Yu XL, Cai MD, Liu YH, Liu JQ, Zhao SY, Li XX, Li YH. Relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures and cryoprotectant concentrations. Cryobiology 2020; 97:110-122. [PMID: 33011172 DOI: 10.1016/j.cryobiol.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/09/2023]
Abstract
The present study analyzed the relationship between bovine oocytes developmental competence and mRNA expression of apoptotic and mitochondrial genes following the change of vitrification temperatures (VTs) and cryoprotectant agent concentrations (CPAs). Cumulus oocyte complexes were randomly divided into five groups: control, vitrified in liquid nitrogen (LN; -196 °C) with 5.6 M CPAs (LN 5.6 M), LN with 6.6 M CPAs (LN 6.6 M), liquid helium (LHe; -269 °C) with 5.6 M CPAs (LHe 5.6 M), and LHe with 6.6 M CPAs (LHe 6.6 M). After vitrification and warming, oocytes of vitrified and control groups were subjected to in vitro maturation (IVM), in vitro fertilization and in vitro culture. The blastocyst rate in LHe 5.6 M group was the highest among the four vitrified groups (13.7% vs. 9.4%, 1.3%, and 8.4%; P < 0.05). The mRNA expression level of 8 apoptotic- and 12 mitochondria-related genes were detected through qRT-PCR after IVM. Lower VT (LHe, -269 °C) positively affected the mRNA expression levels of apoptotic genes (BAD, BID, BTK, TP53, and TP53I3) and mitochondrial genes (COX6B1, DERA, FIS1, NDUFA1, NDUFA4, PRDX2, SLC25A5, TFB1M, and UQCRB), and reduced oxidative stress from freezing. Decreased CPAs (5.6 M) positively affected mRNA expression levels of apoptotic genes (BAD, BCL2A1, BID, and CASP3) in LHe vitrification but negatively affected apoptotic genes (BAD, BAX, BID, BTK, and BCL2A1) in LN vitrification. In conclusion, decreased VTs and CPAs in LHe vitrification may increase the blastocyst rate by changing the mRNA expression levels of these apoptotic and mitochondrial genes for the vitrified oocytes.
Collapse
Affiliation(s)
- Zhi Yang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xue Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Meng Dan Cai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yi Heng Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jia Qi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shi Yu Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiao Xia Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying Hua Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|