1
|
Cordoba-Novoa H, Zhang B, Guo Y, Aslam MM, Fritschi FB, Hoyos-Villegas V. Whole plant transpiration responses of common bean (Phaseolus vulgaris L.) to drying soil: Water channels and transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109759. [PMID: 40068460 DOI: 10.1016/j.plaphy.2025.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 05/07/2025]
Abstract
Common bean (Phaseolus vulgaris L.) is the main legume crop for direct human consumption worldwide. Among abiotic factors affecting common bean, drought is the most limiting. This study aimed at characterizing genetic variability and architecture of transpiration, stomatal regulation and whole plant water use within the Mesoamerican germplasm. A critical fraction of transpirable soil water (FTSWc) was estimated as the inflection point at which NTR starts decreasing linearly. Genome-wide association (GWA) analyses for mean NTR and FTSWc were performed. High variation on mean NTR and FTSWc was found among genotypes. Unreported genomic signals controlling the variation of these traits were identified on Pv01 and Pv07 some located in intergenic, intronic and exonic regions. A set of novel candidate genes and putative regulatory elements located in these QTL were identified. Some of the genes have been previously reported to be involved in abiotic tolerance in model species, including some of the five transcription factors (TF) identified. Four candidate genes, one with potential water transportation activity and three TFs were validated. The gene Phvul.001G108800, an aquaporin SIP2-1 related gene, showed water channel activity through oocyte water assays. Mutant Arabidopsis thaliana (Ath) lines for the homologous genes of common bean were evaluated in transpiration experiments. Two of the three evaluated TFs, UPBEAT1 and C2H2-type ZN finger protein, were involved in the control of transpiration responses to drying soil. Our results provide evidence of novel genes to accelerate the drought tolerance improvement in the crop and study the physiological basis of drought response in plants.
Collapse
Affiliation(s)
- H Cordoba-Novoa
- McGill University, Department of Plant Sciences, Montreal, Canada
| | - B Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Y Guo
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - M M Aslam
- University of Missouri-Columbia, Division of Plant Science & Technology, 1-31 Agriculture Building, Columbia, MO, 65201, USA
| | - F B Fritschi
- University of Missouri-Columbia, Division of Plant Science & Technology, 1-31 Agriculture Building, Columbia, MO, 65201, USA
| | - V Hoyos-Villegas
- Michigan State University, Department of Plant, Soil and Microbial Sciences, 1066 Bogue St, East Lansing, MI, USA; McGill University, Department of Plant Sciences, Montreal, Canada.
| |
Collapse
|
2
|
Valentini G, Hurtado-Gonzales OP, Xavier LFS, He R, Gill U, Song Q, Pastor-Corrales MA. Fine mapping of the unique Ur-11 gene conferring broad resistance to the rust pathogen of common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:64. [PMID: 40035870 DOI: 10.1007/s00122-025-04856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/15/2025] [Indexed: 03/06/2025]
Abstract
KEY MESSAGE Fine mapping positioned the Ur-11 rust resistance gene in common bean to a narrow 9 kb genomic region and enabled the development of a KASP marker tightly linked to Ur-11 for use in gene pyramiding to achieve durable rust resistance. The extensive virulence diversity of the fungal pathogen Uromyces appendiculatus threatens common bean (Phaseolus vulgaris) production. The Ur-11 gene present in the Guatemalan common bean accession PI 181996 conferred resistance to 89 of 90 virulent races of U. appendiculatus. We describe here the fine mapping of Ur-11 and the development and validation of a DNA marker tightly linked to Ur-11. An F2 population from the cross between the susceptible Pinto 114 with the resistant PI 181996 was inoculated with four races of U. appendiculatus. This study established that the rust resistance in PI 181996 was conferred by Ur-11. We then fine mapped Ur-11 using F2 plants and F2:3 families, high-throughput SNP genotyping, SSRs and KASPs marker development, whole-genome sequencing, and local haplotype analysis. Ur-11 was positioned in a narrow 9.01 Kb genomic region on chromosome Pv11 flanked by KASP markers SS322 and SS375. This genomic region included a candidate gene encoding a nucleotide-binding site and leucine rich-repeat domain with pathogen resistance functions. The validation of the SS322 KASP marker was performed on a panel of 206 diverse common bean cultivars that were inoculated with four races of U. appendiculatus. The SS322 marker was 97.5% accurate in identifying the presence of Ur-11 in common bean plants. These results suggest that S322 will be a highly effective molecular marker for the development of common bean cultivars with Ur-11 alone and combining Ur-11 with other rust resistance genes that would confer broad and durable resistance to the hypervirulent bean rust pathogen.
Collapse
Affiliation(s)
- Giseli Valentini
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Oscar P Hurtado-Gonzales
- Plant Germplasm Quarantine Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Beltsville, MD, 20705, USA
| | - Larissa F S Xavier
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Ruifeng He
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Marcial A Pastor-Corrales
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
3
|
Alves SM, Lacanallo GF, Gonçalves-Vidigal MC, Vaz Bisneta M, Vidigal Rosenberg AG, Vidigal Filho PS. Genome-Wide Association for Morphological and Agronomic Traits in Phaseolus vulgaris L. Accessions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2638. [PMID: 39339612 PMCID: PMC11435040 DOI: 10.3390/plants13182638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Exploring genetic resources through genomic analyses has emerged as a powerful strategy to develop common bean (Phaseolus vulgaris L.) cultivars that are both productive and well-adapted to various environments. This study aimed to identify genomic regions linked to morpho-agronomic traits in Mesoamerican and Andean common bean accessions and to elucidate the proteins potentially involved in these traits. We evaluated 109 common bean accessions over three agricultural years, focusing on traits including the grain yield (YDSD), 100-seed weight (SW), number of seeds per pod (SDPD), number of pods per plant (PDPL), first pod insertion height (FPIH), plant height (PLHT), days to flowering (DF), and days to maturity (DPM). Using multilocus methods such as mrMLM, FASTmrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, we identified 36 significant SNPs across all chromosomes (Pv01 to Pv11). Validating these SNPs and candidate genes in segregating populations is crucial for developing more productive common bean cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Stephanie Mariel Alves
- Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil; (S.M.A.); (M.V.B.); (A.G.V.R.); (P.S.V.F.)
| | | | - Maria Celeste Gonçalves-Vidigal
- Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil; (S.M.A.); (M.V.B.); (A.G.V.R.); (P.S.V.F.)
| | - Mariana Vaz Bisneta
- Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil; (S.M.A.); (M.V.B.); (A.G.V.R.); (P.S.V.F.)
| | - Andressa Gonçalves Vidigal Rosenberg
- Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil; (S.M.A.); (M.V.B.); (A.G.V.R.); (P.S.V.F.)
| | - Pedro Soares Vidigal Filho
- Pós-Graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil; (S.M.A.); (M.V.B.); (A.G.V.R.); (P.S.V.F.)
| |
Collapse
|
4
|
Jurado M, García-Fernández C, Campa A, Ferreira JJ. Identification of consistent QTL and candidate genes associated with seed traits in common bean by combining GWAS and RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:143. [PMID: 38801535 PMCID: PMC11130024 DOI: 10.1007/s00122-024-04638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
KEY MESSAGE Association analysis, colocation study with previously reported QTL, and differential expression analyses allowed the identification of the consistent QTLs and main candidate genes controlling seed traits. Common beans show wide seed variations in shape, size, water uptake, and coat proportion. This study aimed to identify consistent genomic regions and candidate genes involved in the genetic control of seed traits by combining association and differential expression analyses. In total, 298 lines from the Spanish Diversity Panel were genotyped with 4,658 SNP and phenotyped for seven seed traits in three seasons. Thirty-eight significant SNP-trait associations were detected, which were grouped into 23 QTL genomic regions with 1,605 predicted genes. The positions of the five QTL regions associated with seed weight were consistent with previously reported QTL. HCPC analysis using the SNP that tagged these five QTL regions revealed three main clusters with significantly different seed weights. This analysis also separated groups that corresponded well with the two gene pools described: Andean and Mesoamerican. Expression analysis was performed on the seeds of the cultivar 'Xana' in three seed development stages, and 1,992 differentially expressed genes (DEGs) were detected, mainly when comparing the early and late seed development stages (1,934 DEGs). Overall, 91 DEGs related to cell growth, signaling pathways, and transcriptomic factors underlying these 23 QTL were identified. Twenty-two DEGs were located in the five QTL regions associated with seed weight, suggesting that they are the main set of candidate genes controlling this character. The results confirmed that seed weight is the sum of the effects of a complex network of loci, and contributed to the understanding of seed phenotype control.
Collapse
Affiliation(s)
- Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
5
|
Kumar N, Boatwright JL, Sapkota S, Brenton ZW, Ballén-Taborda C, Myers MT, Cox WA, Jordan KE, Kresovich S, Boyles RE. Discovering useful genetic variation in the seed parent gene pool for sorghum improvement. Front Genet 2023; 14:1221148. [PMID: 37790706 PMCID: PMC10544336 DOI: 10.3389/fgene.2023.1221148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Multi-parent populations contain valuable genetic material for dissecting complex, quantitative traits and provide a unique opportunity to capture multi-allelic variation compared to the biparental populations. A multi-parent advanced generation inter-cross (MAGIC) B-line (MBL) population composed of 708 F6 recombinant inbred lines (RILs), was recently developed from four diverse founders. These selected founders strategically represented the four most prevalent botanical races (kafir, guinea, durra, and caudatum) to capture a significant source of genetic variation to study the quantitative traits in grain sorghum [Sorghum bicolor (L.) Moench]. MBL was phenotyped at two field locations for seven yield-influencing traits: panicle type (PT), days to anthesis (DTA), plant height (PH), grain yield (GY), 1000-grain weight (TGW), tiller number per meter (TN) and yield per panicle (YPP). High phenotypic variation was observed for all the quantitative traits, with broad-sense heritabilities ranging from 0.34 (TN) to 0.84 (PH). The entire population was genotyped using Diversity Arrays Technology (DArTseq), and 8,800 single nucleotide polymorphisms (SNPs) were generated. A set of polymorphic, quality-filtered markers (3,751 SNPs) and phenotypic data were used for genome-wide association studies (GWAS). We identified 52 marker-trait associations (MTAs) for the seven traits using BLUPs generated from replicated plots in two locations. We also identified desirable allelic combinations based on the plant height loci (Dw1, Dw2, and Dw3), which influences yield related traits. Additionally, two novel MTAs were identified each on Chr1 and Chr7 for yield traits independent of dwarfing genes. We further performed a multi-variate adaptive shrinkage analysis and 15 MTAs with pleiotropic effect were identified. The five best performing MBL progenies were selected carrying desirable allelic combinations. Since the MBL population was designed to capture significant diversity for maintainer line (B-line) accessions, these progenies can serve as valuable resources to develop superior sorghum hybrids after validation of their general combining abilities via crossing with elite pollinators. Further, newly identified desirable allelic combinations can be used to enrich the maintainer germplasm lines through marker-assisted backcross breeding.
Collapse
Affiliation(s)
- Neeraj Kumar
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - J. Lucas Boatwright
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sirjan Sapkota
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Zachary W. Brenton
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Carolina Seed Systems, Darlington, SC, United States
| | - Carolina Ballén-Taborda
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Pee Dee Research and Education Center, Clemson University, Florence, SC, United States
| | - Matthew T. Myers
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - William A. Cox
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Kathleen E. Jordan
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Stephen Kresovich
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca, NY, United States
| | - Richard E. Boyles
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Pee Dee Research and Education Center, Clemson University, Florence, SC, United States
| |
Collapse
|
6
|
Napier JD, Heckman RW, Juenger TE. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. THE PLANT CELL 2023; 35:109-124. [PMID: 36342220 PMCID: PMC9806611 DOI: 10.1093/plcell/koac322] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 05/13/2023]
Abstract
Plants demonstrate a broad range of responses to environmental shifts. One of the most remarkable responses is plasticity, which is the ability of a single plant genotype to produce different phenotypes in response to environmental stimuli. As with all traits, the ability of plasticity to evolve depends on the presence of underlying genetic diversity within a population. A common approach for evaluating the role of genetic variation in driving differences in plasticity has been to study genotype-by-environment interactions (G × E). G × E occurs when genotypes produce different phenotypic trait values in response to different environments. In this review, we highlight progress and promising methods for identifying the key environmental and genetic drivers of G × E. Specifically, methodological advances in using algorithmic and multivariate approaches to understand key environmental drivers combined with new genomic innovations can greatly increase our understanding about molecular responses to environmental stimuli. These developing approaches can be applied to proliferating common garden networks that capture broad natural environmental gradients to unravel the underlying mechanisms of G × E. An increased understanding of G × E can be used to enhance the resilience and productivity of agronomic systems.
Collapse
Affiliation(s)
- Joseph D Napier
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Robert W Heckman
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
7
|
Kuzbakova M, Khassanova G, Oshergina I, Ten E, Jatayev S, Yerzhebayeva R, Bulatova K, Khalbayeva S, Schramm C, Anderson P, Sweetman C, Jenkins CLD, Soole KL, Shavrukov Y. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. FRONTIERS IN PLANT SCIENCE 2022; 13:948099. [PMID: 36186054 PMCID: PMC9523450 DOI: 10.3389/fpls.2022.948099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.
Collapse
Affiliation(s)
- Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Irina Oshergina
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
8
|
Boatwright JL, Sapkota S, Jin H, Schnable JC, Brenton Z, Boyles R, Kresovich S. Sorghum Association Panel whole-genome sequencing establishes cornerstone resource for dissecting genomic diversity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:888-904. [PMID: 35653240 PMCID: PMC9544330 DOI: 10.1111/tpj.15853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/26/2023]
Abstract
Association mapping panels represent foundational resources for understanding the genetic basis of phenotypic diversity and serve to advance plant breeding by exploring genetic variation across diverse accessions. We report the whole-genome sequencing (WGS) of 400 sorghum (Sorghum bicolor (L.) Moench) accessions from the Sorghum Association Panel (SAP) at an average coverage of 38× (25-72×), enabling the development of a high-density genomic marker set of 43 983 694 variants including single-nucleotide polymorphisms (approximately 38 million), insertions/deletions (indels) (approximately 5 million), and copy number variants (CNVs) (approximately 170 000). We observe slightly more deletions among indels and a much higher prevalence of deletions among CNVs compared to insertions. This new marker set enabled the identification of several novel putative genomic associations for plant height and tannin content, which were not identified when using previous lower-density marker sets. WGS identified and scored variants in 5-kb bins where available genotyping-by-sequencing (GBS) data captured no variants, with half of all bins in the genome falling into this category. The predictive ability of genomic best unbiased linear predictor (GBLUP) models was increased by an average of 30% by using WGS markers rather than GBS markers. We identified 18 selection peaks across subpopulations that formed due to evolutionary divergence during domestication, and we found six Fst peaks resulting from comparisons between converted lines and breeding lines within the SAP that were distinct from the peaks associated with historic selection. This population has served and continues to serve as a significant public resource for sorghum research and demonstrates the value of improving upon existing genomic resources.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth Carolina29634USA
- Advanced Plant TechnologyClemson UniversityClemsonSouth Carolina29634USA
| | - Sirjan Sapkota
- Advanced Plant TechnologyClemson UniversityClemsonSouth Carolina29634USA
| | - Hongyu Jin
- Center for Plant Science Innovation and Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraska68588USA
| | - James C. Schnable
- Center for Plant Science Innovation and Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraska68588USA
| | | | - Richard Boyles
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth Carolina29634USA
- Pee Dee Research and Education CenterClemson UniversityFlorenceSouth Carolina29506USA
| | - Stephen Kresovich
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth Carolina29634USA
- Advanced Plant TechnologyClemson UniversityClemsonSouth Carolina29634USA
- Feed the Future Innovation Lab for Crop ImprovementCornell UniversityIthacaNew York14850USA
| |
Collapse
|
9
|
Boatwright JL, Sapkota S, Myers M, Kumar N, Cox A, Jordan KE, Kresovich S. Dissecting the Genetic Architecture of Carbon Partitioning in Sorghum Using Multiscale Phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:790005. [PMID: 35665170 PMCID: PMC9159972 DOI: 10.3389/fpls.2022.790005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Carbon partitioning in plants may be viewed as a dynamic process composed of the many interactions between sources and sinks. The accumulation and distribution of fixed carbon is not dictated simply by the sink strength and number but is dependent upon the source, pathways, and interactions of the system. As such, the study of carbon partitioning through perturbations to the system or through focus on individual traits may fail to produce actionable developments or a comprehensive understanding of the mechanisms underlying this complex process. Using the recently published sorghum carbon-partitioning panel, we collected both macroscale phenotypic characteristics such as plant height, above-ground biomass, and dry weight along with microscale compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose crop. Multivariate analyses of traits resulted in the identification of numerous loci associated with several distinct carbon-partitioning traits, which putatively regulate sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate adaptive shrinkage approach, we identified several loci associated with multiple traits suggesting that pleiotropic and/or interactive effects may positively influence multiple carbon-partitioning traits, or these overlaps may represent molecular switches mediating basal carbon allocating or partitioning networks. Conversely, we also identify a carbon tradeoff where reduced lignin content is associated with increased sugar content. The results presented here support previous studies demonstrating the convoluted nature of carbon partitioning in sorghum and emphasize the importance of taking a holistic approach to the study of carbon partitioning by utilizing multiscale phenotypes.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sirjan Sapkota
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Matthew Myers
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Neeraj Kumar
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Alex Cox
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Kathleen E. Jordan
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
| | - Stephen Kresovich
- Advanced Plant Technology, Clemson University, Clemson, SC, United States
- Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Delfini J, Moda-Cirino V, dos Santos Neto J, Zeffa DM, Nogueira AF, Ribeiro LAB, Ruas PM, Gepts P, Gonçalves LSA. Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:748829. [PMID: 34691125 PMCID: PMC8528967 DOI: 10.3389/fpls.2021.748829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 05/25/2023]
Abstract
The population growth trend in recent decades has resulted in continuing efforts to guarantee food security in which leguminous plants, such as the common bean (Phaseolus vulgaris L.), play a particularly important role as they are relatively cheap and have high nutritional value. To meet this demand for food, the main target for genetic improvement programs is to increase productivity, which is a complex quantitative trait influenced by many component traits. This research aims to identify Quantitative Trait Nucleotides (QTNs) associated with productivity and its components using multi-locus genome-wide association studies. Ten morpho-agronomic traits [plant height (PH), first pod insertion height (FPIH), number of nodules (NN), pod length (PL), total number of pods per plant (NPP), number of locules per pod (LP), number of seeds per pod (SP), total seed weight per plant (TSW), 100-seed weight (W100), and grain yield (YLD)] were evaluated in four environments for 178 Mesoamerican common bean domesticated accessions belonging to the Brazilian Diversity Panel. In order to identify stable QTNs, only those identified by multiple methods (mrMLM, FASTmrMLM, pLARmEB, and ISIS EM-BLASSO) or in multiple environments were selected. Among the identified QTNs, 64 were detected at least thrice by different methods or in different environments, and 39 showed significant phenotypic differences between their corresponding alleles. The alleles that positively increased the corresponding traits, except PH (for which lower values are desired), were considered favorable alleles. The most influenced trait by the accumulation of favorable alleles was PH, showing a 51.7% reduction, while NN, TSW, YLD, FPIH, and NPP increased between 18 and 34%. Identifying QTNs in several environments (four environments and overall adjusted mean) and by multiple methods reinforces the reliability of the associations obtained and the importance of conducting these studies in multiple environments. Using these QTNs through molecular techniques for genetic improvement, such as marker-assisted selection or genomic selection, can be a strategy to increase common bean production.
Collapse
Affiliation(s)
- Jessica Delfini
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vânia Moda-Cirino
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
| | - José dos Santos Neto
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Douglas Mariani Zeffa
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Alison Fernando Nogueira
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Luriam Aparecida Brandão Ribeiro
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Paulo Maurício Ruas
- Departamento de Biologia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Paul Gepts
- Section of Crop and Ecosystem Sciences, Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Leandro Simões Azeredo Gonçalves
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
11
|
Parra-Salazar A, Gomez J, Lozano-Arce D, Reyes-Herrera PH, Duitama J. Robust and efficient software for reference-free genomic diversity analysis of genotyping-by-sequencing data on diploid and polyploid species. Mol Ecol Resour 2021; 22:439-454. [PMID: 34288487 DOI: 10.1111/1755-0998.13477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Genotyping-by-sequencing (GBS) is a widely used and cost-effective technique for obtaining large numbers of genetic markers from populations by sequencing regions adjacent to restriction cut sites. Although a standard reference-based pipeline can be followed to analyse GBS reads, a reference genome is still not available for a large number of species. Hence, reference-free approaches are required to generate the genetic variability information that can be obtained from a GBS experiment. Unfortunately, available tools to perform de novo analysis of GBS reads face issues of usability, accuracy and performance. Furthermore, few available tools are suitable for analysing data sets from polyploid species. In this manuscript, we describe a novel algorithm to perform reference-free variant detection and genotyping from GBS reads. Nonexact searches on a dynamic hash table of consensus sequences allow for efficient read clustering and sorting. This algorithm was integrated in the Next Generation Sequencing Experience Platform (NGSEP) to integrate the state-of-the-art variant detector already implemented in this tool. We performed benchmark experiments with three different empirical data sets of plants and animals with different population structures and ploidies, and sequenced with different GBS protocols at different read depths. These experiments show that NGSEP has comparable and in some cases better accuracy and always better computational efficiency compared to existing solutions. We expect that this new development will be useful for many research groups conducting population genetic studies in a wide variety of species.
Collapse
Affiliation(s)
- Andrea Parra-Salazar
- Department of Systems and Computing Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Jorge Gomez
- Department of Systems and Computing Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Daniela Lozano-Arce
- Department of Systems and Computing Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Jorge Duitama
- Department of Systems and Computing Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
12
|
Mural RV, Grzybowski M, Miao C, Damke A, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, Sigmon B, Kresovich S, Schnable JC. Meta-Analysis Identifies Pleiotropic Loci Controlling Phenotypic Trade-offs in Sorghum. Genetics 2021; 218:6294935. [PMID: 34100945 PMCID: PMC9335936 DOI: 10.1093/genetics/iyab087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy. Here we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum genotypes widely employed by the sorghum genetics community. Comparison of genome wide association studies conducted with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the genome and likely capture only 35-43% of potentially detectable loci controlling variation for traits scored in this population. While limited evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architecture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discoveries from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations.
Collapse
Affiliation(s)
- Ravi V Mural
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Marcin Grzybowski
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Chenyong Miao
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Alyssa Damke
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634 USA.,Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA
| | - Richard E Boyles
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Pee Dee Research and Education Center, Clemson University, Florence, SC 29532 USA
| | | | | | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Stephen Kresovich
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Feed the Future Innovation Lab for Crop Improvement Cornell University, Ithaca, NY 14850 USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
13
|
Chacón-Sánchez MI, Martínez-Castillo J, Duitama J, Debouck DG. Gene Flow in Phaseolus Beans and Its Role as a Plausible Driver of Ecological Fitness and Expansion of Cultigens. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.618709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genus Phaseolus, native to the Americas, is composed of more than eighty wild species, five of which were domesticated in pre-Columbian times. Since the beginning of domestication events in this genus, ample opportunities for gene flow with wild relatives have existed. The present work reviews the extent of gene flow in the genus Phaseolus in primary and secondary areas of domestication with the aim of illustrating how this evolutionary force may have conditioned ecological fitness and the widespread adoption of cultigens. We focus on the biological bases of gene flow in the genus Phaseolus from a spatial and time perspective, the dynamics of wild-weedy-crop complexes in the common bean and the Lima bean, the two most important domesticated species of the genus, and the usefulness of genomic tools to detect inter and intraspecific introgression events. In this review we discuss the reproductive strategies of several Phaseolus species, the factors that may favor outcrossing rates and evidence suggesting that interspecific gene flow may increase ecological fitness of wild populations. We also show that wild-weedy-crop complexes generate genetic diversity over which farmers are able to select and expand their cultigens outside primary areas of domestication. Ultimately, we argue that more studies are needed on the reproductive biology of the genus Phaseolus since for most species breeding systems are largely unknown. We also argue that there is an urgent need to preserve wild-weedy-crop complexes and characterize the genetic diversity generated by them, in particular the genome-wide effects of introgressions and their value for breeding programs. Recent technological advances in genomics, coupled with agronomic characterizations, may make a large contribution.
Collapse
|
14
|
Bowman KD, McCollum G, Albrecht U. SuperSour: A New Strategy for Breeding Superior Citrus Rootstocks. FRONTIERS IN PLANT SCIENCE 2021; 12:741009. [PMID: 34804088 PMCID: PMC8600239 DOI: 10.3389/fpls.2021.741009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 05/02/2023]
Abstract
Citrus crops have a long history of cultivation as grafted trees on selected rootstock cultivars, but all current rootstocks have significant limitations and traditional methods of rootstock breeding take at least 2-3 decades to develop and field test new rootstocks. Citrus production in the United States, and other parts of the world, is impaired by a wide range of biotic and abiotic problems, with especially severe damage caused by the disease huanglongbing (HLB) associated with Candidatus Liberibacter asiaticus. All major commercial citrus scion cultivars are damaged by HLB, but tree tolerance is significantly improved by some rootstocks. To overcome these challenges, the USDA citrus breeding program has implemented a multi-pronged strategy for rootstock breeding that expands the diversity of germplasm utilized in rootstock breeding, significantly increases the number of new hybrids evaluated concurrently, and greatly reduces the time from cross to potential cultivar release. We describe the key components and methodologies of this new strategy, termed "SuperSour," along with reference to the historical favorite rootstock sour orange (Citrus aurantium), and previous methods employed in citrus rootstock breeding. Rootstock propagation by cuttings and tissue culture is one key to the new strategy, and by avoiding the need for nucellar seeds, eliminates the 6- to 15-year delay in testing while waiting for new hybrids to fruit. In addition, avoiding selection of parents and progeny based on nucellar polyembryony vastly expands the potential genepool for use in rootstock improvement. Fifteen new field trials with more than 350 new hybrid rootstocks have been established under the SuperSour strategy in the last 8 years. Detailed multi-year performance data from the trials will be used to identify superior rootstocks for commercial release, and to map important traits and develop molecular markers for the next generation of rootstock development. Results from two of these multi-year replicated field trials with sweet orange scion are presented to illustrate performance of 97 new hybrid rootstocks relative to four commercial rootstocks. Through the first 7 years in the field with endemic HLB, many of the new SuperSour hybrid rootstocks exhibit greatly superior fruit yield, yield efficiency, canopy health, and fruit quality, as compared with the standard rootstocks included in the trials.
Collapse
Affiliation(s)
- Kim D. Bowman
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
- *Correspondence: Kim D. Bowman,
| | - Greg McCollum
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Ute Albrecht
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
| |
Collapse
|
15
|
Wilker J, Humphries S, Rosas-Sotomayor JC, Gómez Cerna M, Torkamaneh D, Edwards M, Navabi A, Pauls KP. Genetic Diversity, Nitrogen Fixation, and Water Use Efficiency in a Panel of Honduran Common Bean ( Phaseolus vulgaris L.) Landraces and Modern Genotypes. PLANTS 2020; 9:plants9091238. [PMID: 32961677 PMCID: PMC7569834 DOI: 10.3390/plants9091238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/09/2023]
Abstract
Common bean (Phaseolus vulgaris L.) provides critical nutrition and a livelihood for millions of smallholder farmers worldwide. Beans engage in symbiotic nitrogen fixation (SNF) with Rhizobia. Honduran hillside farmers farm marginal land and utilize few production inputs; therefore, bean varieties with high SNF capacity and environmental resiliency would be of benefit to them. We explored the diversity for SNF, agronomic traits, and water use efficiency (WUE) among 70 Honduran landrace, participatory bred (PPB), and conventionally bred bean varieties (HON panel) and 6 North American check varieties in 3 low-N field trials in Ontario, Canada and Honduras. Genetic diversity was measured with a 6K single nucleotide polymorphism (SNP) array, and phenotyping for agronomic, SNF, and WUE traits was carried out. STRUCTURE analysis revealed two subpopulations with admixture between the subpopulations. Nucleotide diversity was greater in the landraces than the PPB varieties across the genome, and multiple genomic regions were identified where population genetic differentiation between the landraces and PPB varieties was evident. Significant differences were found between varieties and breeding categories for agronomic traits, SNF, and WUE. Landraces had above average SNF capacity, conventional varieties showed higher yields, and PPB varieties performed well for WUE. Varieties with the best SNF capacity could be used in further participatory breeding efforts.
Collapse
Affiliation(s)
- Jennifer Wilker
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Sally Humphries
- Department of Sociology and Anthropology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Juan Carlos Rosas-Sotomayor
- Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Tegucigalpa 11101, Honduras;
| | - Marvin Gómez Cerna
- Fundación para la Investigación Participativa con Agricultores de Honduras, La Ceiba, Atlántida 561, Honduras;
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Michelle Edwards
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54136)
| |
Collapse
|