1
|
Marks SA, Zhou ZX, Lujan SA, Burkholder AB, Kunkel TA. Evidence that DNA polymerase δ proofreads errors made by DNA polymerase α across the Saccharomyces cerevisiae nuclear genome. DNA Repair (Amst) 2024; 143:103768. [PMID: 39332392 DOI: 10.1016/j.dnarep.2024.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
We show that the rates of single base substitutions, additions, and deletions across the nuclear genome are strongly increased in a strain harboring a mutator variant of DNA polymerase α combined with a mutation that inactivates the 3´-5´ exonuclease activity of DNA polymerase δ. Moreover, tetrad dissections attempting to produce a haploid triple mutant lacking Msh6, which is essential for DNA mismatch repair (MMR) of base•base mismatches made during replication, result in tiny colonies that grow very slowly and appear to be aneuploid and/or defective in oxidative metabolism. These observations are consistent with the hypothesis that during initiation of nuclear DNA replication, single-base mismatches made by naturally exonuclease-deficient DNA polymerase α are extrinsically proofread by DNA polymerase δ, such that in the absence of this proofreading, the mutation rate is strongly elevated. Several implications of these data are discussed, including that the mutational signature of defective extrinsic proofreading in yeast could appear in human tumors.
Collapse
Affiliation(s)
- Sarah A Marks
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
2
|
Melde RH, Bao K, Sharp NP. Recent insights into the evolution of mutation rates in yeast. Curr Opin Genet Dev 2022; 76:101953. [PMID: 35834945 PMCID: PMC9491374 DOI: 10.1016/j.gde.2022.101953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/08/2023]
Abstract
Mutation is the origin of all genetic variation, good and bad. The mutation process can evolve in response to mutations, positive or negative selection, and genetic drift, but how these forces contribute to mutation-rate variation is an unsolved problem at the heart of genetics research. Mutations can be challenging to measure, but genome sequencing and other tools have allowed for the collection of larger and more detailed datasets, particularly in the yeast-model system. We review key hypotheses for the evolution of mutation rates and describe recent advances in understanding variation in mutational properties within and among yeast species. The multidimensional spectrum of mutations is increasingly recognized as holding valuable clues about how this important process evolves.
Collapse
Affiliation(s)
- Robert H Melde
- Department of Genetics, University of Wisconsin-Madison, USA.
| | - Kevin Bao
- Department of Genetics, University of Wisconsin-Madison, USA
| | - Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, USA. https://twitter.com/@sharpnath
| |
Collapse
|
3
|
Lamb NA, Bard JE, Loll-Krippleber R, Brown GW, Surtees JA. Complex mutation profiles in mismatch repair and ribonucleotide reductase mutants reveal novel repair substrate specificity of MutS homolog (MSH) complexes. Genetics 2022; 221:6605222. [PMID: 35686905 PMCID: PMC9339293 DOI: 10.1093/genetics/iyac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
Determining mutation signatures is standard for understanding the etiology of human tumors and informing cancer treatment. Multiple determinants of DNA replication fidelity prevent mutagenesis that leads to carcinogenesis, including the regulation of free deoxyribonucleoside triphosphate pools by ribonucleotide reductase and repair of replication errors by the mismatch repair system. We identified genetic interactions between rnr1 alleles that skew and/or elevate deoxyribonucleoside triphosphate levels and mismatch repair gene deletions. These defects indicate that the rnr1 alleles lead to increased mutation loads that are normally acted upon by mismatch repair. We then utilized a targeted deep-sequencing approach to determine mutational profiles associated with mismatch repair pathway defects. By combining rnr1 and msh mutations to alter and/or increase deoxyribonucleoside triphosphate levels and alter the mutational load, we uncovered previously unreported specificities of Msh2-Msh3 and Msh2-Msh6. Msh2-Msh3 is uniquely able to direct the repair of G/C single-base deletions in GC runs, while Msh2-Msh6 specifically directs the repair of substitutions that occur at G/C dinucleotides. We also identified broader sequence contexts that influence variant profiles in different genetic backgrounds. Finally, we observed that the mutation profiles in double mutants were not necessarily an additive relationship of mutation profiles in single mutants. Our results have implications for interpreting mutation signatures from human tumors, particularly when mismatch repair is defective.
Collapse
Affiliation(s)
- Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA,University at Buffalo Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Raphael Loll-Krippleber
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jennifer A Surtees
- Corresponding author: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Rm 4215, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
4
|
Zhou ZX, Lujan SA, Burkholder AB, St. Charles J, Dahl J, Farrell CE, Williams JS, Kunkel TA. How asymmetric DNA replication achieves symmetrical fidelity. Nat Struct Mol Biol 2021; 28:1020-1028. [PMID: 34887558 PMCID: PMC8815454 DOI: 10.1038/s41594-021-00691-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Scott A. Lujan
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Adam B. Burkholder
- Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Jordan St. Charles
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Joseph Dahl
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Corinne E. Farrell
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Jessica S. Williams
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| | - Thomas A. Kunkel
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Jiang P, Ollodart AR, Sudhesh V, Herr AJ, Dunham MJ, Harris K. A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae. eLife 2021; 10:68285. [PMID: 34523420 PMCID: PMC8497059 DOI: 10.7554/elife.68285] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although studies of Saccharomyces cerevisiae have provided many insights into mutagenesis and DNA repair, most of this work has focused on a few laboratory strains. Much less is known about the phenotypic effects of natural variation within S. cerevisiae’s DNA repair pathways. Here, we use natural polymorphisms to detect historical mutation spectrum differences among several wild and domesticated S. cerevisiae strains. To determine whether these differences are likely caused by genetic mutation rate modifiers, we use a modified fluctuation assay with a CAN1 reporter to measure de novo mutation rates and spectra in 16 of the analyzed strains. We measure a 10-fold range of mutation rates and identify two strains with distinctive mutation spectra. These strains, known as AEQ and AAR, come from the panel’s ‘Mosaic beer’ clade and share an enrichment for C > A mutations that is also observed in rare variation segregating throughout the genomes of several Mosaic beer and Mixed origin strains. Both AEQ and AAR are haploid derivatives of the diploid natural isolate CBS 1782, whose rare polymorphisms are enriched for C > A as well, suggesting that the underlying mutator allele is likely active in nature. We use a plasmid complementation test to show that AAR and AEQ share a mutator allele in the DNA repair gene OGG1, which excises 8-oxoguanine lesions that can cause C > A mutations if left unrepaired.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Anja R Ollodart
- Department of Genome Sciences, University of Washington, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Vidha Sudhesh
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Alan J Herr
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, United States.,Department of Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
6
|
Soriano I, Vazquez E, De Leon N, Bertrand S, Heitzer E, Toumazou S, Bo Z, Palles C, Pai CC, Humphrey TC, Tomlinson I, Cotterill S, Kearsey SE. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genet 2021; 17:e1009526. [PMID: 34228709 PMCID: PMC8284607 DOI: 10.1371/journal.pgen.1009526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.
Collapse
Affiliation(s)
- Ignacio Soriano
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Enrique Vazquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nagore De Leon
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sophia Toumazou
- ZRAB, University of Oxford, Oxford, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhihan Bo
- ZRAB, University of Oxford, Oxford, United Kingdom
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy C. Humphrey
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sue Cotterill
- St. George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | |
Collapse
|
7
|
Herzog M, Alonso-Perez E, Salguero I, Warringer J, Adams D, Jackson SP, Puddu F. Mutagenic mechanisms of cancer-associated DNA polymerase ϵ alleles. Nucleic Acids Res 2021; 49:3919-3931. [PMID: 33764464 PMCID: PMC8053093 DOI: 10.1093/nar/gkab160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
A single amino acid residue change in the exonuclease domain of human DNA polymerase ϵ, P286R, is associated with the development of colorectal cancers, and has been shown to impart a mutator phenotype. The corresponding Pol ϵ allele in the yeast Saccharomyces cerevisiae (pol2-P301R), was found to drive greater mutagenesis than an entirely exonuclease-deficient Pol ϵ (pol2-4), an unexpected phenotype of ultra-mutagenesis. By studying the impact on mutation frequency, type, replication-strand bias, and sequence context, we show that ultra-mutagenesis is commonly observed in yeast cells carrying a range of cancer-associated Pol ϵ exonuclease domain alleles. Similarities between mutations generated by these alleles and those generated in pol2-4 cells indicate a shared mechanism of mutagenesis that yields a mutation pattern similar to cancer Signature 14. Comparison of POL2 ultra-mutator with pol2-M644G, a mutant in the polymerase domain decreasing Pol ϵ fidelity, revealed unexpected analogies in the sequence context and strand bias of mutations. Analysis of mutational patterns unique to exonuclease domain mutant cells suggests that backtracking of the polymerase, when the mismatched primer end cannot be accommodated in the proofreading domain, results in the observed insertions and T>A mutations in specific sequence contexts.
Collapse
Affiliation(s)
- Mareike Herzog
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- The Wellcome Sanger Institute, Hinxton CB10 1HH, UK
| | - Elisa Alonso-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90, Göteborg, Sweden
| | - Israel Salguero
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90, Göteborg, Sweden
| | | | - Stephen P Jackson
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fabio Puddu
- The Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
8
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|
9
|
Reha-Krantz LJ, Goodman MF. John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics 2020; 216:827-836. [PMID: 33268388 PMCID: PMC7768258 DOI: 10.1534/genetics.120.303813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
John W. Drake died 02-02-2020, a mathematical palindrome, which he would have enjoyed, given his love of "word play and logic," as stated in his obituary and echoed by his family, friends, students, and colleagues. Many aspects of Jan's career have been reviewed previously, including his early years as a Caltech graduate student, and when he was editor-in-chief, with the devoted assistance of his wife Pam, of this journal for 15 impactful years. During his editorship, he raised the profile of GENETICS as the flagship journal of the Genetics Society of America and inspired and contributed to the creation of the Perspectives column, coedited by Jim Crow and William Dove. At the same time, Jan was building from scratch the Laboratory of Molecular Genetics on the newly established Research Triangle Park campus of the National Institute of Environmental Health Science, which he headed for 30 years. This commentary offers a unique perspective on Jan's legacy; we showcase Jan's 1969 benchmark discovery of antimutagenic T4 DNA polymerases and the research by three generations (and counting) of scientists whose research stems from that groundbreaking discovery. This is followed by a brief discussion of Jan's passion: his overriding interest in analyzing mutation rates across species. Several anecdotal stories are included to bring alive one of Jan's favorite phrases, "to think like a geneticist." We feature Jan's genetical approach to mutation studies, along with the biochemistry of DNA polymerase function, our area of expertise. But in the end, we acknowledge, as Jan did, that genetics, also known as in vivo biochemistry, prevails.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|