1
|
Lee U, Li C, Langer CB, Svetec N, Zhao L. Comparative single cell analysis of transcriptional bursting reveals the role of genome organization on de novo transcript origination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.29.591771. [PMID: 38746255 PMCID: PMC11092510 DOI: 10.1101/2024.04.29.591771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type-specific transcriptomic divergence of the Drosophila germline has posed a significant technical barrier for comparative single-cell RNA-sequencing (scRNA-Seq) studies. By quantifying a surprisingly strong correlation between species- and cell type-specific divergence in three closely related Drosophila species, we apply a new statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25-30 million years of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time. After validating these cross-species cell type classifications using RNA fluorescence in situ hybridization (FISH) and imaging, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first show altering transcriptional burst size contributes to pre-meiotic transcription and altering bursting frequency contributes to post-meiotic expression. We then report global differences in autosomal vs. X chromosomal transcription may arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of neighboring genes' transcriptional bursting properties during key stages of spermatogenesis.
Collapse
Affiliation(s)
- UnJin Lee
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
2
|
Ni KD, Wei CG, Zhu JQ, Mu CK, Wang CL, Hou CC. Transcriptome analysis of different stages of testis development in Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101453. [PMID: 40010143 DOI: 10.1016/j.cbd.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
The swimming crab (Portunus trituberculatus) is an important marine economic species, however its artificial breeding yield is relatively low. Currently, the main challenge faced by the swimming crab seed industry is the reliance on wild populations for seed cultivation, which results in unstable yield and quality, affecting the healthy development of the crab farming industry to some extent. The quality of germplasm resources depends on the quality of gametes, and the quality of sperm depends on the orderly genetic regulation process of spermatogenesis. Therefore, elucidating the genetic regulatory mechanisms of spermatogenesis is of great significance for improving the germplasm resources of P. trituberculatus. To gain a deeper understanding of this process, we conducted a comparative transcriptome study on the testis of the swimming crab at different developmental stages. This study aims to identify key genes that regulate testicular development. We performed paraffin section identification on the testicular tissue of male crabs and conducted transcriptome analysis on the testicular tissue at five different developmental stages and somatic cells. Through differential expression analysis, we screened a total of 31,788 differentially expressed genes (DEGs) from stages I to VI. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we found that these DEGs were significantly enriched in 15 pathways, including important functional pathways such as the adrenergic signaling pathway, HIF-1 signaling pathway, and TGF-β signaling pathway. GO analysis results showed that calcium ion homeostasis and cell skeleton-related activities were significantly enriched in stage II. Further protein-protein interaction network analysis revealed 68 hub genes, including 13 eukaryotic initiation factors, 6 Ras superfamily members, and 6 genes related to cell division. In addition, genes such as Actin, Myosin, and Nup50 consistently showed high expression at all developmental stages, while genes related to calcium ion homeostasis, such as CaM, significantly increased in expression during stage II. Hsp90 and apoptosis-related genes had higher expression in stage IV, while Smad4 had higher expression in stage V. These results suggest that stage II of the swimming crab sperm development may be a critical period for spermatogenesis, and stage IV may be an important period for regulating sperm quality and quantity. This study not only provides a foundation for further research on the molecular mechanisms of testicular development and spermatogenesis in the swimming crab but also offers theoretical support for improving breeding yield, which has significant practical application value.
Collapse
Affiliation(s)
- Kai-Di Ni
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chao-Guang Wei
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jun-Quan Zhu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Majane AC, Cridland JM, Blair LK, Begun DJ. Evolution and genetics of accessory gland transcriptome divergence between Drosophila melanogaster and D. simulans. Genetics 2024; 227:iyae039. [PMID: 38518250 PMCID: PMC11151936 DOI: 10.1093/genetics/iyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
Studies of allele-specific expression in interspecific hybrids have provided important insights into gene-regulatory divergence and hybrid incompatibilities. Many such investigations in Drosophila have used transcriptome data from complex mixtures of many tissues or from gonads, however, regulatory divergence may vary widely among species, sexes, and tissues. Thus, we lack sufficiently broad sampling to be confident about the general biological principles of regulatory divergence. Here, we seek to fill some of these gaps in the literature by characterizing regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland, in F1 hybrids between Drosophila melanogaster and D. simulans. The accessory gland produces seminal fluid proteins, which play an important role in male and female fertility and may be subject to adaptive divergence due to male-male or male-female interactions. We find that trans differences are relatively more abundant than cis, in contrast to most of the interspecific hybrid literature, though large effect-size trans differences are rare. Seminal fluid protein genes have significantly elevated levels of expression divergence and tend to be regulated through both cis and trans divergence. We find limited misexpression (over- or underexpression relative to both parents) in this organ compared to most other Drosophila studies. As in previous studies, male-biased genes are overrepresented among misexpressed genes and are much more likely to be underexpressed. ATAC-Seq data show that chromatin accessibility is correlated with expression differences among species and hybrid allele-specific expression. This work identifies unique regulatory evolution and hybrid misexpression properties of the accessory gland and suggests the importance of tissue-specific allele-specific expression studies.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Logan K Blair
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Cridland JM, Begun DJ. Male-derived transcripts isolated from the mated female reproductive tract in Drosophila melanogaster. G3 (BETHESDA, MD.) 2023; 13:jkad202. [PMID: 37725947 PMCID: PMC10627254 DOI: 10.1093/g3journal/jkad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
In species with internal fertilization, sperm, and seminal fluid are transferred from male to female during mating. While both sperm and seminal fluid contain various types of molecules, including RNA, the role of most of these molecules in the coordination of fertilization or in other possible functions is poorly understood. In Drosophila, exosomes from the accessory gland, which produces seminal fluid, are transferred to females, but their potential cargoes have not been described. Moreover, while the RNA composition of sperm has been described in several mammalian species, little work on this problem has occurred in Drosophila. Here we use single nucleotide polymorphism differences between males and females from a set of highly inbred lines of D. melanogaster, and transcriptome data from the female reproductive tract, sperm, testis, and accessory gland, to investigate the potential origin, male vs female, RNA molecules isolated from 3 female reproductive tract organs, the seminal receptacle and spermatheca, which store sperm, and the parovaria, which does not. We find that mated females carry male-derived transcripts from many genes, including those that are markers of the accessory gland and known seminal fluid proteins. Our observations also support the idea that intact sperm transcripts can be isolated from the female sperm storage organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Takashima YA, Majane AC, Begun DJ. Evolution of secondary cell number and position in the Drosophila accessory gland. PLoS One 2023; 18:e0278811. [PMID: 37878630 PMCID: PMC10599531 DOI: 10.1371/journal.pone.0278811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 10/27/2023] Open
Abstract
In animals with internal fertilization, males transfer gametes and seminal fluid during copulation, both of which are required for successful reproduction. In Drosophila and other insects, seminal fluid is produced in the paired accessory gland (AG), the ejaculatory duct, and the ejaculatory bulb. The D. melanogaster AG has emerged as an important model system for this component of male reproductive biology. Seminal fluid proteins produced in the Drosophila AG are required for proper storage and use of sperm by the females, and are also critical for establishing and maintaining a suite of short- and long-term postcopulatory female physiological responses that promote reproductive success. The Drosophila AG is composed of two main cell types. The majority of AG cells, which are referred to as main cells, are responsible for production of many seminal fluid proteins. A minority of cells, about 4%, are referred to as secondary cells. These cells, which are restricted to the distal tip of the D. melanogaster AG, may play an especially important role in the maintenance of the long-term female post-mating response. Many studies of Drosophila AG evolution have suggested that the proteins produced in the gland evolve quickly, as does the transcriptome. Here, we investigate the evolution of secondary cell number and position in the AG in a collection of eight species spanning the entire history of the Drosophila genus. We document a heretofore underappreciated rapid evolutionary rate for both number and position of these specialized AG cells, raising several questions about the developmental, functional, and evolutionary significance of this variation.
Collapse
Affiliation(s)
- Yoko A. Takashima
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Alex C. Majane
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
7
|
Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics 2023; 224:iyad034. [PMID: 36869688 PMCID: PMC10474930 DOI: 10.1093/genetics/iyad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Transcriptome analysis of several animal clades suggests that male reproductive tract gene expression evolves quickly. However, the factors influencing the abundance and distribution of within-species variation, the ultimate source of interspecific divergence, are poorly known. Drosophila melanogaster, an ancestrally African species that has recently spread throughout the world and colonized the Americas in the last roughly 100 years, exhibits phenotypic and genetic latitudinal clines on multiple continents, consistent with a role for spatially varying selection in shaping its biology. Nevertheless, geographic expression variation in the Americas is poorly described, as is its relationship to African expression variation. Here, we investigate these issues through the analysis of two male reproductive tissue transcriptomes [testis and accessory gland (AG)] in samples from Maine (USA), Panama, and Zambia. We find dramatic differences between these tissues in differential expression between Maine and Panama, with the accessory glands exhibiting abundant expression differentiation and the testis exhibiting very little. Latitudinal expression differentiation appears to be influenced by the selection of Panama expression phenotypes. While the testis shows little latitudinal expression differentiation, it exhibits much greater differentiation than the accessory gland in Zambia vs American population comparisons. Expression differentiation for both tissues is non-randomly distributed across the genome on a chromosome arm scale. Interspecific expression divergence between D. melanogaster and D. simulans is discordant with rates of differentiation between D. melanogaster populations. Strongly heterogeneous expression differentiation across tissues and timescales suggests a complex evolutionary process involving major temporal changes in the way selection influences expression evolution in these organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Colin E Contino
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Freda PJ, Toxopeus J, Dowle EJ, Ali ZM, Heter N, Collier RL, Sower I, Tucker JC, Morgan TJ, Ragland GJ. Transcriptomic and functional genetic evidence for distinct ecophysiological responses across complex life cycle stages. J Exp Biol 2022; 225:275641. [PMID: 35578907 DOI: 10.1242/jeb.244063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
Abstract
Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved Cellular Stress Response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNAi (RNA interference) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to -5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially-expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Entomology, Kansas State University, 1603 Old Claflin Place, Manhattan, KS 66506, USA
| | - Jantina Toxopeus
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Zainab M Ali
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Nicholas Heter
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rebekah L Collier
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Isaiah Sower
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Joseph C Tucker
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| |
Collapse
|
9
|
Hurtado J, Almeida FC, Belliard SA, Revale S, Hasson E. Research gaps and new insights in the evolution of Drosophila seminal fluid proteins. INSECT MOLECULAR BIOLOGY 2022; 31:139-158. [PMID: 34747062 DOI: 10.1111/imb.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
While the striking effects of seminal fluid proteins (SFPs) on females are fairly conserved among Diptera, most SFPs lack detectable homologues among the SFP repertoires of phylogenetically distant species. How such a rapidly changing proteome conserves functions across taxa is a fascinating question. However, this and other pivotal aspects of SFPs' evolution remain elusive because discoveries on these proteins have been mainly restricted to the model Drosophila melanogaster. Here, we provide an overview of the current knowledge on the inter-specific divergence of the SFP repertoire in Drosophila and compile the increasing amount of relevant genomic information from multiple species. Capitalizing on the accumulated knowledge in D. melanogaster, we present novel sets of high-confidence SFP candidates and transcription factors presumptively involved in regulating the expression of SFPs. We also address open questions by performing comparative genomic analyses that failed to support the existence of many conserved SFPs shared by most dipterans and indicated that gene co-option is the most frequent mechanism accounting for the origin of Drosophila SFP-coding genes. We hope our update establishes a starting point to integrate further data and thus widen the understanding of the intricate evolution of these proteins.
Collapse
Affiliation(s)
- Juan Hurtado
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Francisca Cunha Almeida
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - Silvina Anahí Belliard
- Laboratorio de Insectos de Importancia Agronómica, IGEAF (INTA), GV-IABIMO (CONICET), Buenos Aires, Argentina
| | - Santiago Revale
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
10
|
Majane AC, Cridland JM, Begun DJ. Single-nucleus transcriptomes reveal evolutionary and functional properties of cell types in the Drosophila accessory gland. Genetics 2022; 220:iyab213. [PMID: 34849871 PMCID: PMC9097260 DOI: 10.1093/genetics/iyab213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
Many traits responsible for male reproduction evolve quickly, including gene expression phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in polyandrous species is thought to be driven by competition among males for fertilizations and conflicts between male and female fitness interests that manifest in postcopulatory phenotypes. In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory gland and ejaculatory duct are required for female sperm storage and use, and influence female postcopulatory traits. Recent work has shown that these cell types have overlapping but distinct effects on female postcopulatory biology, yet relatively little is known about their evolutionary properties. Here, we use single-nucleus RNA-Seq of the accessory gland and ejaculatory duct from Drosophila melanogaster and two closely related species to comprehensively describe the cell diversity of these tissues and their transcriptome evolution for the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell types, and expression of many other genes additionally defines each cell type. We also report previously undocumented diversity in main cells. Transcriptome divergence was found to be heterogeneous across cell types and lineages, revealing a complex evolutionary process. Furthermore, protein adaptation varied across cell types, with potential consequences for our understanding of selection on male postcopulatory traits.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Kopania EEK, Larson EL, Callahan C, Keeble S, Good JM. Molecular Evolution across Mouse Spermatogenesis. Mol Biol Evol 2022; 39:6517785. [PMID: 35099536 PMCID: PMC8844503 DOI: 10.1093/molbev/msac023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
12
|
Cridland JM, Majane AC, Zhao L, Begun DJ. Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster. Genetics 2022; 220:iyab207. [PMID: 34791207 PMCID: PMC8733444 DOI: 10.1093/genetics/iyab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here, we investigate the population biology of recently evolved de novo genes expressed in the Drosophila melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data, we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat Chem Biol 2021; 17:1037-1045. [PMID: 34552220 DOI: 10.1038/s41589-021-00822-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
Collapse
|