1
|
Meiklejohn CD, Blumenstiel JP. Invasion of the P elements: Tolerance is not futile. PLoS Biol 2018; 16:e3000036. [PMID: 30376563 PMCID: PMC6207293 DOI: 10.1371/journal.pbio.3000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Organisms are locked in an eternal struggle with parasitic DNA sequences that live inside their genomes and wreak havoc on their host's chromosomes as they spread through populations. To combat these parasites, host species have evolved elaborate mechanisms of resistance that suppress their activity. A new study in Drosophila indicates that, prior to the acquisition of resistance, individuals can vary in their ability to tolerate the activity of these genomic parasites, ignoring or repairing the damage they induce. This tolerance results from variation at genes involved in germline development and DNA damage checkpoints and suggests that these highly conserved cellular processes may be influenced by current and historical intragenomic parasite loads.
Collapse
Affiliation(s)
- Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
2
|
Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics 2017; 203:1513-31. [PMID: 27516614 DOI: 10.1534/genetics.115.184119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression.
Collapse
|
3
|
Simmons MJ, Grimes CD, Czora CS. Cytotype Regulation Facilitates Repression of Hybrid Dysgenesis by Naturally Occurring KP Elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:1891-7. [PMID: 27172198 PMCID: PMC4938643 DOI: 10.1534/g3.116.028597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
P elements inserted in the Telomere Associated Sequences (TAS) at the left end of the X chromosome are determiners of cytotype regulation of the entire P family of transposons. This regulation is mediated by Piwi-interacting (pi) RNAs derived from the telomeric P elements (TPs). Because these piRNAs are transmitted maternally, cytotype regulation is manifested as a maternal effect of the TPs. When a TP is combined with a transgenic P element inserted at another locus, this maternal effect is strengthened. However, when certain TPs are combined with transgenes that contain the small P element known as KP, stronger regulation arises from a zygotic effect of the KP element. This zygotic effect is observed with transgenic KP elements that are structurally intact, as well as with KP elements that are fused to an ancillary promoter from the hsp70 gene. Zygotic regulation by a KP element occurs only when a TP was present in the maternal germ line, and it is more pronounced when the TP was also present in the grand-maternal germ line. However, this regulation does not require zygotic expression of the TP These observations can be explained if maternally transmitted piRNAs from TPs enable a polypeptide encoded by KP elements to repress P element transposition in zygotes that contain a KP element. In nature, repression by the KP polypeptide may therefore be facilitated by cytotype-mediating piRNAs.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Craig D Grimes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Cody S Czora
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
4
|
Ronsseray S. Paramutation phenomena in non-vertebrate animals. Semin Cell Dev Biol 2015; 44:39-46. [PMID: 26318740 DOI: 10.1016/j.semcdb.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
Paramutation was initially described in maize and was defined as an epigenetic interaction between two alleles of a locus, through which one allele induces a heritable modification of the other allele without modifying the DNA sequence [1,2]. Thus it implies that the paramutated allele conserves its new properties on the long term over generations even in the absence of the paramutagenic allele and that it turns paramutagenic itself, without undergoing any changes in the DNA sequence. Some epigenetic interactions have been described in two non-vertebrate animal models, which appear to exhibit similar properties. Both systems are linked to trans-generational transmission of non-coding small RNAs. In Drosophila melanogaster, paramutation is correlated with transmission of PIWI-Interacting RNAs (piRNAs), a class of small non-coding RNAs that repress mobile DNA in the germline. A tandem repeated transgenic locus producing abundant ovarian piRNAs can activate piRNA production and associated homology-dependent silencing at a locus that was previously stably devoid of such capacities. The newly converted locus is then perfectly stable in absence of the inducer locus (>100 generations) and becomes fully paramutagenic. In Caenorhabditis elegans, paramutation is correlated with transmission of siRNAs, which are produced by transgenes targeted by piRNAs in the germline. Indeed, a transgenic locus, targeted by the piRNA machinery, produces siRNAs that can induce silencing of homologous transgenes, which can be further transmitted in a repressed state over generations despite the absence of the inducer transgenic locus. As in fly, the paramutated locus can become fully paramutagenic, and paramutation can be mediated by cytoplasmic inheritance without transmission of the paramutagenic locus itself. Nevertheless, in contrast to flies where the induction is only maternally inherited, both parents can transmit it in worms. In addition, a reciprocal phenomenon - (from off toward on) - appears to be also possible in worms as some activated transgenes can reactivate silent transgenes in the germline, and this modification can also be transmitted to next generations, even so it appears to be only partially stable. Thus, in a given system, opposite paramutation-like phenomena could exist, mediated by antagonist active pathways. As in plants, paramutation in flies and worms correlates with chromatin structure modification of the paramutated locus. In flies, inheritance of small RNAs from one generation to the next transmits a memory mainly targeting loci for repression whereas in worms, small RNAs can target loci either for repression or expression. Nevertheless, in the two species, paramutation can play an important role in the epigenome establishment.
Collapse
Affiliation(s)
- Stéphane Ronsseray
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9 quai Saint-Bernard, F-75005 Paris, France; CNRS, IBPS, UMR 7622, Developmental Biology, 9 quai Saint-Bernard, F-75005 Paris, France.
| |
Collapse
|
5
|
Erwin AA, Galdos MA, Wickersheim ML, Harrison CC, Marr KD, Colicchio JM, Blumenstiel JP. piRNAs Are Associated with Diverse Transgenerational Effects on Gene and Transposon Expression in a Hybrid Dysgenic Syndrome of D. virilis. PLoS Genet 2015; 11:e1005332. [PMID: 26241928 PMCID: PMC4524669 DOI: 10.1371/journal.pgen.1005332] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/29/2022] Open
Abstract
Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother's genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations. Transposable elements (TEs) are selfish elements that copy themselves. More than half of the human genome is comprised of such elements. Studies in the fruit flies Drosophila melanogaster and D. virilis have been important in demonstrating a role for RNA silencing by PIWI-interacting RNAs (piRNAs) in protecting the genome against these harmful elements. These small RNAs are capable of recognizing TE mRNAs and mediating their destruction. They are also transmitted by the female germline to offspring in order to maintain a stable genome across generations. When males carrying a particular TE family are crossed with females lacking the element, the mother is unable to provide genome defense via complementary piRNAs that target the element. This leads to excess TE activation in the germline and sterility, a phenomenon known as hybrid dysgenesis. In this article we characterize the genomic landscape of TE destabilization that occurs in dysgenic crosses of D. virilis. We demonstrate that this mobilization is associated with an increased level of germline TE expression that persists through adulthood. In addition, we find that TE activation is associated with diverse effects on normal gene expression that are also mediated by piRNAs.
Collapse
Affiliation(s)
- Alexandra A. Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Mauricio A. Galdos
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Michelle L. Wickersheim
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Chris C. Harrison
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Kendra D. Marr
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jack M. Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Majumdar S, Rio DC. P Transposable Elements in Drosophila and other Eukaryotic Organisms. Microbiol Spectr 2015; 3:MDNA3-0004-2014. [PMID: 26104714 PMCID: PMC4399808 DOI: 10.1128/microbiolspec.mdna3-0004-2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/20/2022] Open
Abstract
P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins.
Collapse
Affiliation(s)
| | - Donald C. Rio
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, CA 94720-3204
| |
Collapse
|
7
|
Simmons MJ, Meeks MW, Jessen E, Becker JR, Buschette JT, Thorp MW. Genetic interactions between P elements involved in piRNA-mediated repression of hybrid dysgenesis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2014; 4:1417-27. [PMID: 24902606 PMCID: PMC4132173 DOI: 10.1534/g3.114.011221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that telomeric P elements inserted at the left end of the X chromosome are anchors of the P cytotype, the maternally inherited state that regulates P-element activity in the germ line of Drosophila melanogaster. This regulation is mediated by small RNAs that associate with the Piwi family of proteins (piRNAs). We extend the analysis of cytotype regulation by studying new combinations of telomeric and nontelomeric P elements (TPs and non-TPs). TPs interact with each other to enhance cytotype regulation. This synergism involves a strictly maternal effect, called presetting, which is apparently mediated by piRNAs transmitted through the egg. Presetting by a maternal TP can elicit regulation by an inactive paternally inherited TP, possibly by stimulating its production of primary piRNAs. When one TP has come from a stock heterozygous for a mutation in the aubergine, piwi, or Suppressor of variegation 205 genes, the synergism between two TPs is impaired. TPs also interact with non-TPs to enhance cytotype regulation, even though the non-TPs lack regulatory ability on their own. Non-TPs are not susceptible to presetting by a TP, nor is a TP susceptible to presetting by a non-TP. The synergism between TPs and non-TPs is stronger when the TP was inherited maternally. This synergism may be due to the accumulation of secondary piRNAs created by ping-pong cycling between primary piRNAs from the TPs and mRNAs from the non-TPs. Maternal transmission of P-element piRNAs plays an important role in the maintenance of strong cytotype regulation over generations.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Marshall W Meeks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Erik Jessen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jordan R Becker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jared T Buschette
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Michael W Thorp
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
8
|
Basquin D, Spierer A, Begeot F, Koryakov DE, Todeschini AL, Ronsseray S, Vieira C, Spierer P, Delattre M. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing. PLoS One 2014; 9:e96802. [PMID: 24820312 PMCID: PMC4018442 DOI: 10.1371/journal.pone.0096802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.
Collapse
Affiliation(s)
- Denis Basquin
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Anne Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Anne-Laure Todeschini
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Pierre Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Marion Delattre
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Maternal enhancement of cytotype regulation in Drosophila melanogaster by genetic interactions between telomeric P elements and non-telomeric transgenic P elements. Genet Res (Camb) 2013; 94:339-51. [PMID: 23374243 DOI: 10.1017/s0016672312000523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The X-linked telomeric P elements (TPs) TP5 and TP6 regulate the activity of the entire P element family because they are inserted in a major locus for the production of Piwi-interacting RNAs (piRNAs). The potential for this cytotype regulation is significantly strengthened when either TP5 or TP6 is combined with a non-telomeric X-linked or autosomal transgene that contains a P element. By themselves, none of the transgenic P elements have any regulatory ability. Synergism between the telomeric and transgenic P elements is much greater when the TP is derived from a female. Once an enhanced regulatory state is established in a female, it is transmitted to her offspring independently of either the telomeric or transgenic P elements - that is, it works through a strictly maternal effect. Synergistic regulation collapses when either the telomeric or the transgenic P element is removed from the maternal genotype, and it is significantly impaired when the TPs come from stocks heterozygous for mutations in the genes aubergine, piwi or Su(var)205. The synergism between telomeric and transgenic P elements is consistent with a model in which P piRNAs are amplified by alternating, or ping-pong, targeting of primary piRNAs to sense and antisense P transcripts, with the sense transcripts being derived from the transgenic P element and the antisense transcripts being derived from the TP.
Collapse
|
10
|
Merriman PJ, Simmons MJ. A test for enhancement of cytotype regulation in Drosophila melanogaster by the transposase-encoding P element ∆2-3. Mol Genet Genomics 2013; 288:535-47. [PMID: 23925475 DOI: 10.1007/s00438-013-0772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
Transposable P elements are regulated in the germ line by piRNAs, which are small RNAs that associate with the Piwi class of proteins. This regulation, called the P cytotype, is enhanced by genetic interactions between P elements that are primary sources of these RNAs and other P elements. The enhanced regulation is thought to reflect amplification of the primary piRNAs by cleavage of mRNAs derived from the other P elements through a mechanism called the ping-pong cycle. We tested the transposase-encoding P element known as ∆2-3 for its ability to enhance cytotype regulation anchored in P elements inserted at the telomere of the left arm of the X chromosome (TP elements). The ∆2-3 P element lacks the intron between exons 2 and 3 in the structurally complete P element (CP). Unlike the CP element, it does not markedly enhance cytotype regulation anchored in TP elements, nor does it transmit transposase activity through the egg cytoplasm. However, mRNAs from both the CP and ∆2-3 elements are maternally deposited in embryos. These observations suggest that maternally transmitted CP mRNA enhances cytotype regulation by participating in the ping-pong cycle and that it encodes the P transposase in the embryonic germ line, whereas maternally transmitted ∆2-3 mRNA does not, possibly because it is not efficiently directed into the primordial embryonic germ line. Strong transposon regulation may, therefore, require ping-pong cycling with maternally inherited mRNAs in the embryo.
Collapse
Affiliation(s)
- Peter J Merriman
- Department of Genetics, Cell Biology and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN, 55108-1095, USA
| | | |
Collapse
|
11
|
Pöyhönen M, de Vanssay A, Delmarre V, Hermant C, Todeschini AL, Teysset L, Ronsseray S. Homology-dependent silencing by an exogenous sequence in the Drosophila germline. G3 (BETHESDA, MD.) 2012; 2:331-8. [PMID: 22413086 PMCID: PMC3291502 DOI: 10.1534/g3.111.001925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/24/2011] [Indexed: 11/25/2022]
Abstract
The study of P transposable element repression in Drosophila melanogaster led to the discovery of the trans-silencing effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences) represses in trans, in the female germline, a homologous P-lacZ transgene inserted in euchromatin. TSE shows variegation in ovaries and displays a maternal effect as well as epigenetic transmission through meiosis. In addition, TSE is highly sensitive to mutations affecting heterochromatin components (including HP1) and the Piwi-interacting RNA silencing pathway (piRNA), a homology-dependent silencing mechanism that functions in the germline. TSE appears thus to involve the piRNA-based silencing proposed to play a major role in P repression. Under this hypothesis, TSE may also be established when homology between the telomeric and target loci involves sequences other than P elements, including sequences exogenous to the D. melanogaster genome. We have tested whether TSE can be induced via lacZ sequence homology. We generated a piggyBac-otu-lacZ transgene in which lacZ is under the control of the germline ovarian tumor promoter, resulting in strong expression in nurse cells and the oocyte. We show that all piggyBac-otu-lacZ transgene insertions are strongly repressed by maternally inherited telomeric P-lacZ transgenes. This repression shows variegation between egg chambers when it is incomplete and presents a maternal effect, two of the signatures of TSE. Finally, this repression is sensitive to mutations affecting aubergine, a key player of the piRNA pathway. These data show that TSE can occur when silencer and target loci share solely a sequence exogenous to the D. melanogaster genome. This functionally supports the hypothesis that TSE represents a general repression mechanism which can be co-opted by new transposable elements to regulate their activity after a transfer to the D. melanogaster genome.
Collapse
Affiliation(s)
| | | | - Valérie Delmarre
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Catherine Hermant
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | | | - Laure Teysset
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622, CNRS–Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
12
|
Maternal impairment of transposon regulation in Drosophila melanogaster by mutations in the genes aubergine, piwi and Suppressor of variegation 205. Genet Res (Camb) 2011; 92:261-72. [PMID: 20943007 DOI: 10.1017/s0016672310000352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
TP5, a P element inserted in the telomere-associated sequences of the X chromosome, represses the excision of other P elements in the germ line through a combination of maternal and zygotic effects. The maternal component of this repression is impaired by heterozygous mutations in the aubergine and Suppressor of variegation 205 genes; one mutation in the piwi gene also appears to impair repression. In the female germ line, the level of TP5 mRNA is increased by these impairing mutations. The impairing aubergine and piwi mutations also increase the level of germ-line mRNA from CP, a transgene that encodes the P-element transposase; however, the Suppressor of variegation 205 mutation does not. These findings are discussed in terms of a model of P-element regulation that involves post-transcriptional and chromatin re-organizing events mediated by maternally transmitted small RNAs derived from the telomeric P element.
Collapse
|
13
|
Cytotype regulation by telomeric P elements in Drosophila melanogaster: variation in regulatory strength and maternal effects. Genet Res (Camb) 2010; 91:327-36. [PMID: 19922696 DOI: 10.1017/s001667230999022x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Strains carrying the X-linked telomeric P elements TP5 or TP6 varied in their ability to repress hybrid dysgenesis. The rank ordering of these strains was consistent across different genetic assays and was not related to the type of telomeric P element (TP5 or TP6) present. Strong repression of dysgenesis was associated with weak expression of mRNA from the telomeric P element and also with a reduced amount of mRNA from a transposase-producing P element contained within a transgene inserted on an autosome. A strictly maternal component of repression, transmitted independently of the telomeric P element, was detected in the daughters but not the sons of females from the strongest repressing strains. However, this effect was seen only when dysgenesis was induced by crossing these females to males from a P strain, not when it was induced by crossing them to males homozygous for a single transposase-producing P element contained within a transgene. These findings are consistent with the hypothesis that the P cytotype, the condition that regulates P elements, involves an RNA interference mechanism mediated by piRNAs produced by telomeric P elements such as TP5 and TP6 and amplified by RNAs produced by other P elements.
Collapse
|
14
|
Cytotype regulation inDrosophila melanogaster: synergism between telomeric and non-telomericPelements. Genet Res (Camb) 2010; 91:383-94. [PMID: 20122295 DOI: 10.1017/s0016672309990322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryThe X-linked telomericPelementsTP5andTP6interact synergistically with non-telomericPelements to repress hybrid dysgenesis. In this repression, the telomericPelements exert maternal effects, which, however, are not sufficient to establish synergism with the non-telomericPelements. Once synergism is established, the capacity to repress dysgenesis in the offspring of a cross persists for at least two generations after removing the telomericPelement from the genotype. At the molecular level, synergism between telomeric and non-telomericPelements is correlated with effective elimination ofP-element mRNA in the germ line. Maternally transmitted mutations in the genesaubergine,piwiandSuppressor of variegation 205[Su(var)205] block the establishment of synergism between telomeric and non-telomericPelements, and paternally transmitted mutations inpiwiandSu(var)205disrupt synergism that has already been established. These findings are discussed in terms of a model of cytotype regulation ofPelements based on Piwi-interacting RNAs (piRNAs) that are amplified by cycling between sense and antisense species.
Collapse
|
15
|
Frydrychova RC, Biessmann H, Mason JM. Regulation of telomere length in Drosophila. Cytogenet Genome Res 2009; 122:356-64. [PMID: 19188706 PMCID: PMC2637470 DOI: 10.1159/000167823] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2008] [Indexed: 01/20/2023] Open
Abstract
Telomeres in all organisms must perform the same vital functions to ensure cell viability: to act as a protective chromosome cap that distinguishes natural chromosome ends from DNA double strand breaks, and to balance the loss of DNA from the chromosome end due to incomplete DNA replication. Most eukaryotes rely on a specialized reverse transcriptase, telomerase, to generate short repeats at the chromosome end to maintain chromosome length. Drosophila, however, uses retrotransposons that target telomeres. Transposition of these elements may be controlled by small RNAs and spreading of silent chromatin from the telomere associated sequence, both of which limit the retrotransposon expression level. Proteins binding to the retrotransposon array, such as HP1 and PROD, may also modulate transcription. It is not clear however, that simply increasing transcript levels of the telomeric retrotransposons is sufficient to increase transposition. The chromosome cap may control the ability of the telomere-specific elements to attach to chromosome ends. As in other organisms, chromosomes can be elongated by gene conversion. Although the mechanism is not known, HP1, a component of the cap, and the Ku proteins are key components in this pathway.
Collapse
Affiliation(s)
- Radmila Capkova Frydrychova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA)
| | - Harald Biessmann
- Developmental Biology Center, University of California, Irvine, CA (USA)
| | - James M. Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA)
| |
Collapse
|
16
|
Telomeric trans-silencing in Drosophila melanogaster: tissue specificity, development and functional interactions between non-homologous telomeres. PLoS One 2008; 3:e3249. [PMID: 18813361 PMCID: PMC2547894 DOI: 10.1371/journal.pone.0003249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/02/2008] [Indexed: 12/03/2022] Open
Abstract
Background The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, “TAS”) has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. Principal Findings Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. Conclusions and Significance Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.
Collapse
|
17
|
Simmons MJ, Niemi JB, Ryzek DF, Lamour C, Goodman JW, Kraszkiewicz W, Wolff R. Cytotype regulation by telomeric P elements in Drosophila melanogaster: interactions with P elements from M' strains. Genetics 2007; 176:1957-66. [PMID: 17565961 PMCID: PMC1950605 DOI: 10.1534/genetics.106.066670] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 05/21/2007] [Indexed: 11/18/2022] Open
Abstract
P strains of Drosophila are distinguished from M strains by having P elements in their genomes and also by having the P cytotype, a maternally inherited condition that strongly represses P-element-induced hybrid dysgenesis. The P cytotype is associated with P elements inserted near the left telomere of the X chromosome. Repression by the telomeric P elements TP5 and TP6 is significantly enhanced when these elements are crossed into M' strains, which, like P strains, carry P elements, but have little or no ability to repress dysgenesis. The telomeric and M' P elements must coexist in females for this enhanced repression ability to develop. However, once established, it is transmitted maternally to the immediate offspring independently of the telomeric P elements themselves. Females that carry a telomeric P element but that do not carry M' P elements may also transmit an ability to repress dysgenesis to their offspring independently of the telomeric P element. Cytotype regulation therefore involves a maternally transmissible product of telomeric P elements that can interact synergistically with products from paternally inherited M' P elements. This synergism between TP and M' P elements also appears to persist for at least one generation after the TP has been removed from the genotype.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108-1095, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Simmons MJ, Ryzek DF, Lamour C, Goodman JW, Kummer NE, Merriman PJ. Cytotype regulation by telomeric P elements in Drosophila melanogaster: evidence for involvement of an RNA interference gene. Genetics 2007; 176:1945-55. [PMID: 17603126 PMCID: PMC1950604 DOI: 10.1534/genetics.106.066746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 04/23/2007] [Indexed: 11/18/2022] Open
Abstract
P elements inserted at the left telomere of the X chromosome evoke the P cytotype, a maternally inherited condition that regulates the P-element family in the Drosophila germline. This regulation is completely disrupted in stocks heterozygous for mutations in aubergine, a gene whose protein product is involved in RNA interference. However, cytotype is not disrupted in stocks heterozygous for mutations in two other RNAi genes, piwi and homeless (spindle-E), or in a stock heterozygous for a mutation in the chromatin protein gene Enhancer of zeste. aubergine mutations exert their effects in the female germline, where the P cytotype is normally established and through which it is maintained. These effects are transmitted maternally to offspring of both sexes independently of the mutations themselves. Lines derived from mutant aubergine stocks reestablish the P cytotype quickly, unlike lines derived from stocks heterozygous for a mutation in Suppressor of variegation 205, the gene that encodes the telomere-capping protein HP1. Cytotype regulation by telomeric P elements may be tied to a system that uses RNAi to regulate the activities of telomeric retrotransposons in Drosophila.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108-1095, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Haley KJ, Stuart JR, Raymond JD, Niemi JB, Simmons MJ. Impairment of cytotype regulation of P-element activity in Drosophila melanogaster by mutations in the Su(var)205 gene. Genetics 2005; 171:583-95. [PMID: 15998729 PMCID: PMC1456773 DOI: 10.1534/genetics.102.001594] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 06/06/2005] [Indexed: 11/18/2022] Open
Abstract
Cytotype regulation of transposable P elements in the germ line of Drosophila melanogaster is associated with maternal transmission of P elements inserted at the left telomere of the X chromosome. This regulation is impaired in long-term stocks heterozygous for mutations in Suppressor of variegation 205 [Su(var)205], a gene implicated in the control of telomere length. Regulation by TP5, a structurally incomplete P element at the X telomere, is more profoundly impaired than regulation by TP6, a different incomplete P element inserted at the same site in a TAS repeat at the X telomere. Genetic analysis with the TP5 element indicates that its regulatory ability is not impaired in flies whose fathers came directly from a stock heterozygous for a Su(var)205 mutation, even when the flies themselves carry this mutation. However, it is impaired in flies whose grandfathers came from such a stock. Furthermore, this impairment occurs even when the Su(var)205 mutation is not present in the flies themselves or in their mothers. The impaired regulatory ability of TP5 persists for at least several generations after TP5 X chromosomes extracted from a long-term mutant Su(var)205 stock are made homozygous in the absence of the Su(var)205 mutation. Impairment of TP5-mediated regulation is therefore not directly dependent on the Su(var)205 mutation. However, it is characteristic of the six mutant Su(var)205 stocks that were tested and may be related to the elongated telomeres that develop in these stocks. Impairment of regulation by TP5 is also seen in a stock derived from Gaiano, a wild-type strain that has elongated telomeres due to a dominant mutation in the Telomere elongation (Tel) gene. Regulation by TP6 is not impaired in the Gaiano genetic background. The regulatory abilities of the TP5 and TP6 elements are therefore not equally susceptible to the effects of elongated telomeres in the mutant Su(var)205 and Gaiano stocks.
Collapse
Affiliation(s)
- Kevin J Haley
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
20
|
Bushey D, Locke J. Mutations in Su(var)205 and Su(var)3-7 suppress P-element-dependent silencing in Drosophila melanogaster. Genetics 2004; 168:1395-411. [PMID: 15579693 PMCID: PMC1448784 DOI: 10.1534/genetics.104.026914] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 07/19/2004] [Indexed: 11/18/2022] Open
Abstract
In Drosophila melanogaster, the w(+) transgene in P[lacW]ci(Dplac) is uniformly expressed throughout the adult eye. However, when other P elements are present, this w(+) transgene is randomly silenced and this produces a variegated eye phenotype. This P-element-dependent silencing (PDS) is limited to w(+) transgenes inserted in a specific region on chromosome 4. In a screen for genetic modifiers of PDS, we isolated mutations in Su(var)205, Su(var)3-7, and two unidentified genes that suppress this variegated phenotype. Therefore, only a few of the genes encoding heterochromatic modifiers act dose dependently in PDS. In addition, we recovered two spontaneous mutations of P[lacW]ci(Dplac) that variegate in the absence of P elements. These P[lacW]i(Dplac) derivatives have a gypsy element inserted proximally to the P[lacW]ci(Dplac) insert. The same mutations that suppress PDS also suppress w(+) silencing from these P[lacW]ci(Dplac) derivative alleles. This indicates that both cis-acting changes in sequence and trans-acting P elements cause a similar change in chromatin structure that silences w(+) expression in P[lacW]ci(Dplac). Together, these results confirm that PDS occurs at P[lacW]ci(Dplac) because of the chromatin structure at this chromosomal position. Studying w(+) variegation from P[lacW]ci(Dplac) provides a model for the interactions that can enhance heterochromatic silencing at single P-element inserts.
Collapse
Affiliation(s)
- Daniel Bushey
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|