1
|
Earl CC, Damen FW, Yin M, Aasa KL, Burris SK, Goergen CJ. Strain Estimation of the Murine Right Ventricle Using High-Frequency Speckle-Tracking Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3291-3300. [PMID: 34373135 PMCID: PMC8488001 DOI: 10.1016/j.ultrasmedbio.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 05/25/2023]
Abstract
Right ventricular (RV) strain measurements from ultrasound via speckle-tracking techniques are being used more frequently as a non-invasive diagnostic tool for a variety of cardiopulmonary pathologies. However, despite the clinical utility of ultrasound RV strain measurements, quantification of RV strain in rodents remains difficult owing to unique image artifacts and non-standardized methodologies. We demonstrate here a simple approach for measuring RV strain in both mice and rats using high-frequency ultrasound and automated speckle tracking. Our results show estimated peak RV free-wall longitudinal strain values (mean ± standard error of the mean) in mice (n = 15) and rats (n = 5) of, respectively, -10.38% ± 0.4% and -4.85% ± 0.42%. We further estimated the 2-D Green-Lagrange strain within the RV free wall, with longitudinal components estimated at -5.7% ± 0.48% in mice and -2.1% ± 0.28% in rats. These methods and data may provide a foundation for future work aimed at evaluating murine RV strain levels in different disease models.
Collapse
Affiliation(s)
- Conner C Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Melissa Yin
- Fujifilm VisualSonics Inc., Toronto, Ontario, Canada
| | | | | | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Comparative analysis on the anti-inflammatory/immune effect of mesenchymal stem cell therapy for the treatment of pulmonary arterial hypertension. Sci Rep 2021; 11:2012. [PMID: 33479312 PMCID: PMC7820276 DOI: 10.1038/s41598-021-81244-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.
Collapse
|
3
|
Sugihara H, Kimura K, Yamanouchi K, Teramoto N, Okano T, Daimon M, Morita H, Takenaka K, Shiga T, Tanihata J, Aoki Y, Inoue-Nagamura T, Yotsuyanagi H, Komuro I. Age-Dependent Echocardiographic and Pathologic Findings in a Rat Model with Duchenne Muscular Dystrophy Generated by CRISPR/Cas9 Genome Editing. Int Heart J 2020; 61:1279-1284. [PMID: 33191355 DOI: 10.1536/ihj.20-372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is X-linked recessive myopathy caused by mutations in the dystrophin gene. Although conventional treatments have improved their prognosis, inevitable progressive cardiomyopathy is still the leading cause of death in patients with DMD. To explore novel therapeutic options, a suitable animal model with heart involvement has been warranted.We have generated a rat model with an out-of-frame mutation in the dystrophin gene using CRISPR/Cas9 genome editing (DMD rats). The aim of this study was to evaluate their cardiac functions and pathologies to provide baseline data for future experiments developing treatment options for DMD.In comparison with age-matched wild rats, 6-month-old DMD rats showed no significant differences by echocardiographic evaluations. However, 10-month-old DMD rats showed significant deterioration in left ventricular (LV) fractional shortening (P = 0.024), and in tissue Doppler peak systolic velocity (Sa) at the LV lateral wall (P = 0.041) as well as at the right ventricular (RV) free-wall (P = 0.004). These functional findings were consistent with the fibrotic distributions by histological analysis.Although the cardiac phenotype was milder than anticipated, DMD rats showed similar distributions and progression of heart involvement to those of patients with DMD. This animal may be a useful model with which to develop effective drugs and to understand the underlying mechanisms of progressive heart failure in patients with DMD.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koichi Kimura
- The Institute of Medical Science, The University of Tokyo.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tomoko Okano
- Department of Laboratory Medicine, The University of Tokyo Hospital
| | - Masao Daimon
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Laboratory Medicine, The University of Tokyo Hospital
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsu Takenaka
- Department of Laboratory Medicine, The University of Tokyo Hospital
| | - Takanori Shiga
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Jun Tanihata
- Department of Molecular Therapy, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry
| | | | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
4
|
Kitpipatkun P, Yairo A, Kato K, Matsuura K, Ma D, Goya S, Uemura A, Takahashi K, Tanaka R. Effects of Individual and Coexisting Diabetes and Cardiomyopathy on Diastolic Function in Rats ( Rattus norvegicus domestica). Comp Med 2020; 70:499-509. [PMID: 33138891 DOI: 10.30802/aalas-cm-20-000042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of this study was to evaluate diastolic intraventricular pressure gradients (IVPG) and 2-dimensional tissue tracking (2DTT) patterns during diabetes and cardiomyopathy. Rats (n = 60) were induced to become diabetic (DM group, n = 15) by using streptozotocin, to become cardiomyopathic (CM group, n = 15) by using isoproterenol, and to become both diabetic and cardiomyopathic (DMCM group, n = 15); control rats (CT group, n = 15) were injected with saline. Two months after induction, all rats underwent conventional echocardiography, IVPG, and 2DTT and then were euthanized for microscopic examination of cardiac fibrosis. Compared with the controls, all 3 treated groups showed diastolic dysfunction and delayed cardiac relaxation. DMCM rats showed the most pronounced cardiac abnormalities. In addition, CM and DMCM groups had showed decreased middle IVPG, whereas DMCM rats had decreased midapical IVPG. Although the overall IVPG of the CM group was normal, the middle segment was significantly decreased. 2DTT results showed that the DMCM group had a delay in relaxation compared with other groups. IVPG and 2DTT can be used to overcome the limitation of conventional echocardiographic methods and reveal diastolic dysfunction. DM worsened diastolic function during cardiac disease.
Collapse
Affiliation(s)
- Pitipat Kitpipatkun
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akira Yairo
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Konosuke Kato
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsuhiro Matsuura
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Danfu Ma
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Seijirow Goya
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akiko Uemura
- Department of Clinical Veterinary Medicine, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Ken Takahashi
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan;,
| |
Collapse
|
5
|
Yoshida T, Matsuura K, Goya S, Ma D, Shimada K, Kitpipatkun P, Namiki R, Uemura A, Suzuki K, Tanaka R. Metformin prevents the development of monocrotaline-induced pulmonary hypertension by decreasing serum levels of big endothelin-1. Exp Ther Med 2020; 20:149. [PMID: 33093887 PMCID: PMC7571338 DOI: 10.3892/etm.2020.9278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with poor prognosis, and it is characterized by the progressive elevation of pulmonary vascular resistance and pressure. Various factors are associated with the pathology of PH, including AMP-activated protein kinase (AMPK) deficiency. The present study aimed to evaluate the therapeutic effect of metformin, an AMPK activator, in a monocrotaline (MCT)-induced PH rat model. Rats were randomly divided into the following three groups: i) Saline-injected group (sham group); ii) monocrotaline (MCT)-injected group (PH group); iii) MCT-injected and metformin-treated group (MT group). Four weeks following MCT injection, cardiac ultrasonography, invasive hemodynamic measurements, measurement of serum levels of big endothelin-1 (big ET-1) and histological analysis were performed to evaluate the effect of metformin treatment in PH. Pulmonary arterial pressure and serum big ET-1 concentrations were reduced in the MT group compared with the PH group. Medial wall thickness and wall area of the pulmonary arterioles in the MT group were decreased compared with the PH group. Comparing the right heart functional parameters among groups revealed that the acceleration time/ejection time ratio improved in the MT group compared with the PH group. Thus, the present study demonstrated the efficacy of metformin in an MCT-induced PH rat model and suggested that metformin may be a valuable, potential novel therapeutic for the treatment of PH.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Katsuhiro Matsuura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Seijirow Goya
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Danfu Ma
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Pitipat Kitpipatkun
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryosuke Namiki
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuhiko Suzuki
- Department of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
6
|
Espe EKS, Aronsen JM, Nordén ES, Zhang L, Sjaastad I. Regional right ventricular function in rats: a novel magnetic resonance imaging method for measurement of right ventricular strain. Am J Physiol Heart Circ Physiol 2020; 318:H143-H153. [DOI: 10.1152/ajpheart.00357.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The function of the right ventricle (RV) is linked to clinical outcome in many cardiovascular diseases, but its role in experimental heart failure remains largely unexplored due to difficulties in measuring RV function in vivo. We aimed to advance RV imaging by establishing phase-contrast MRI (PC-MRI) as a robust method for measuring RV function in rodents. A total of 46 Wistar-Hannover rats with left ventricular (LV) myocardial infarction and 10 control rats (sham) were examined 6 wk after surgery. Using a 9.4-T preclinical MRI system, we utilized PC-MRI to measure strain/strain rate in the RV free wall under isoflurane anesthesia. Cine MRI was used to measure RV volumes. LV end-diastolic pressure (LVEDP) was measured and used to identify pulmonary congestion. The infarct rats were divided into two groups: those with signs of pulmonary congestion (PC), with LVEDP ≥ 15 mmHg ( n = 26) and those without signs of pulmonary congestion (NPC), with LVEDP < 15 mmHg ( n = 20). The NPC rats exhibited preserved RV strains/strain rates, whereas the PC rats exhibited reduced strains/strain rates (26–48% lower than sham). Of the strain parameters, longitudinal strain and strain rate exhibited the highest correlations to LVEDP and lung weight (rho = 0.65–0.72, P < 0.001). Basal longitudinal strain was most closely associated with signs of pulmonary congestion and indexes of RV remodeling. Longitudinal RV strain had higher area under the curve than ejection fraction for detecting subtle RV dysfunction (area under the curve = 0.85 vs. 0.67). In conclusion, we show for the first time that global and regional RV myocardial strain can be measured robustly in rodents. Reduced RV strain was closely associated with indexes of pulmonary congestion and molecular markers of RV remodeling. NEW & NOTEWORTHY Global and regional right ventricular myocardial strain can be measured with high reproducibility and low interobserver variability in rodents using tissue phase mapping MRI. Reduced right ventricular strain was associated with indexes of pulmonary congestion and molecular markers of right ventricular remodeling. Regional strain in the basal myocardium was considerably higher than in the apical myocardium.
Collapse
Affiliation(s)
- Emil K. S. Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan M. Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Sun J, Cheng J, Ding X, Chi J, Yang J, Li W. β3 adrenergic receptor antagonist SR59230A exerts beneficial effects on right ventricular performance in monocrotaline-induced pulmonary arterial hypertension. Exp Ther Med 2019; 19:489-498. [PMID: 31853320 PMCID: PMC6909721 DOI: 10.3892/etm.2019.8236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a high mortality rate. Previous studies have revealed the important function of the β3 adrenergic receptor (β3-AR) in cardiovascular diseases, and the potential beneficial effects of numerous β3-AR agonists on pulmonary vasodilation. Conversely, a number of studies have proposed that the antagonism of β3-AR may prevent heart failure. The present study aimed to investigate the functional involvement of β3-AR and the effects of the β3-AR antagonist, SR59230A, in PAH and subsequent heart failure. A rat PAH model was established by the subcutaneous injection of monocrotaline (MCT), and the rats were randomly assigned to groups receiving four weeks of SR59230A treatment or the vehicle control. SR59230A treatment significantly improved right ventricular function in PAH in vivo compared with the vehicle control (P<0.001). Additionally, the expression level of β3-AR was significantly upregulated in the lung and heart tissues of PAH rats compared with the sham group (P<0.01), and SR59230A treatment inhibited this increase in the lung (P<0.05), but not the heart. Specifically, SR59230A suppressed the elevated expression of endothelial nitric oxide and alleviated inflammatory infiltration to the lung under PAH conditions. These results are, to the best of our knowledge, the first to reveal that SR59230A exerts beneficial effects on right ventricular performance in rats with MCT-induced PAH. Furthermore, blocking β3-AR with SR59230A may alleviate the structural changes and inflammatory infiltration to the lung as a result of reduced oxidative stress.
Collapse
Affiliation(s)
- Jiantao Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiali Cheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jing Chi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiemei Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weimin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China.,Department of Cardiovascular Medicine, The First Hospital of Harbin City, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
8
|
Wang YD, Li YD, Ding XY, Wu XP, Li C, Guo DC, Shi YP, Lu XZ. 17β-estradiol preserves right ventricular function in rats with pulmonary arterial hypertension: an echocardiographic and histochemical study. Int J Cardiovasc Imaging 2018; 35:441-450. [PMID: 30350115 PMCID: PMC6454076 DOI: 10.1007/s10554-018-1468-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/12/2018] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is more prevalent in females. Paradoxically, female patients have better right ventricular (RV) function and higher survival rates than males. However, the effects of 17β-estradiol (E2) on RV function in PAH has not been studied. Twenty-four male rats were exposed to monocrotaline (MCT) to induce experimental PAH, while treated with E2 or vehicle respectively. Together with eight control rats, thirty-two rats were examined by echocardiography 4 weeks after drug administration. Echocardiographic measurement of RV function included: tricuspid annular plane systolic excursion (TAPSE), RV index of myocardial performance (RIMP), RV fractional area change (RVFAC) and tricuspid annular systolic velocity (s′). RV free wall longitudinal strain (RVLSFW) and RV longitudinal shortening fraction (RVLSF) were also used to quantify RV function. RV morphology was determined by echocardiographic and histological analysis. TAPSE, RVFAC and s′ were reduced, and RIMP was elevated in the MCT-treated group and vehicle-treated group, when compared with control group (P < 0.01). TAPSE, RVFAC and s′ in the E2 group were higher, while RIMP was lower than those in the MCT-treated group and vehicle-treated group (P < 0.01). Myocardial functional parameters (RVLSFW and RVLSF) were also higher in the E2 group. Enhanced serum E2 levels were closely correlated with the improvement in RV functional parameters and enhancement of serum BNP levels (P < 0.01 for all groups). RV function decreased significantly in male rats with MCT-induced PAH, while E2 exhibited a protective effect on RV function, suggesting that E2 is a critical modulator of sex differences in PAH.
Collapse
Affiliation(s)
- Yi-Dan Wang
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.,Beijing Key Laboratory of Hypertension, Beijing, 100020, China
| | - Yi-Dan Li
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Xue-Yan Ding
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Xiao-Peng Wu
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Cheng Li
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Di-Chen Guo
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Yan-Ping Shi
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Xiu-Zhang Lu
- Department of Echocardiography, Heart Center, Beijing Chao Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
9
|
Türck P, Lacerda DS, Carraro CC, de Lima-Seolin BG, Teixeira RB, Poletto Bonetto JH, Colombo R, Schenkel PC, Belló-Klein A, da Rosa Araujo AS. Trapidil improves hemodynamic, echocardiographic and redox state parameters of right ventricle in monocrotaline-induced pulmonary arterial hypertension model. Biomed Pharmacother 2018; 103:182-190. [PMID: 29653363 DOI: 10.1016/j.biopha.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension is a disease characterized by increased pulmonary vascular resistance and redox imbalance, leading to failure of right ventricle. Trapidil has been described to improve the redox balance and cardiac conditions. HYPOTHESIS Trapidil can improve the redox balance and contribute to functional improvements of the RV in PAH. METHODS AND RESULTS Male, 5week-old Wistar rats were divided into four groups: Control, Control + Trapidil, Monocrotaline and Monocrotaline + Trapidil. PAH was induced by an intraperitoneal injection of monocrotaline 60 mg/kg at day 0. Treatment started at day 7 (5 or 8 mg/kg/day) until day 14, when animals were euthanized after echocardiography and catheterism. Right ventricular systolic pressure and pressure/time derivatives were increased in monocrotaline animals. The increased right ventricular diameters in monocrotaline groups were reduced with trapidil. Monocrotaline groups showed higher lipid peroxidation and glutathione peroxidase activity. Trapidil reduced NADPH oxidases activities and increased the reduced glutathiones/total glutathiones ratio. Protein expression of phospholamban in RV was diminished in monocrotaline groups, whereas expression of RyR and SERCA was enhanced in the groups treated with trapidil. CONCLUSION Our data suggest that trapidil induces an improvement in RV remodeling in PAH model, mitigating the progression of the disease.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Denise Santos Lacerda
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Cristina Campos Carraro
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Bruna Gazzi de Lima-Seolin
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Rayane Brinck Teixeira
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Rafael Colombo
- Laboratory of Pharmacology and Physiology, Universidade de Caxias do Sul (UCS), Rio Grande do Sul, Brazil
| | - Paulo Cavalheiro Schenkel
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Basic Sciences Institute of Health, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
10
|
Katira BH, Giesinger RE, Engelberts D, Zabini D, Kornecki A, Otulakowski G, Yoshida T, Kuebler WM, McNamara PJ, Connelly KA, Kavanagh BP. Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury. Am J Respir Crit Care Med 2017; 196:1411-1421. [PMID: 28795839 DOI: 10.1164/rccm.201611-2268oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE In the original 1974 in vivo study of ventilator-induced lung injury, Webb and Tierney reported that high Vt with zero positive end-expiratory pressure caused overwhelming lung injury, subsequently shown by others to be due to lung shear stress. OBJECTIVES To reproduce the lung injury and edema examined in the Webb and Tierney study and to investigate the underlying mechanism thereof. METHODS Sprague-Dawley rats weighing approximately 400 g received mechanical ventilation for 60 minutes according to the protocol of Webb and Tierney (airway pressures of 14/0, 30/0, 45/10, 45/0 cm H2O). Additional series of experiments (20 min in duration to ensure all animals survived) were studied to assess permeability (n = 4 per group), echocardiography (n = 4 per group), and right and left ventricular pressure (n = 5 and n = 4 per group, respectively). MEASUREMENTS AND MAIN RESULTS The original Webb and Tierney results were replicated in terms of lung/body weight ratio (45/0 > 45/10 ≈ 30/0 ≈ 14/0; P < 0.05) and histology. In 45/0, pulmonary edema was overt and rapid, with survival less than 30 minutes. In 45/0 (but not 45/10), there was an increase in microvascular permeability, cyclical abolition of preload, and progressive dilation of the right ventricle. Although left ventricular end-diastolic pressure decreased in 45/10, it increased in 45/0. CONCLUSIONS In a classic model of ventilator-induced lung injury, high peak pressure (and zero positive end-expiratory pressure) causes respiratory swings (obliteration during inspiration) in right ventricular filling and pulmonary perfusion, ultimately resulting in right ventricular failure and dilation. Pulmonary edema was due to increased permeability, which was augmented by a modest (approximately 40%) increase in hydrostatic pressure. The lung injury and acute cor pulmonale is likely due to pulmonary microvascular injury, the mechanism of which is uncertain, but which may be due to cyclic interruption and exaggeration of pulmonary blood flow.
Collapse
Affiliation(s)
- Bhushan H Katira
- 1 The Research Institute.,2 Department of Critical Care Medicine.,3 Interdepartmental Division of Critical Care Medicine
| | | | | | - Diana Zabini
- 5 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Alik Kornecki
- 6 Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | | | - Takeshi Yoshida
- 1 The Research Institute.,2 Department of Critical Care Medicine.,3 Interdepartmental Division of Critical Care Medicine
| | - Wolfgang M Kuebler
- 7 Department of Surgery, and.,8 Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,5 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | | | - Kim A Connelly
- 5 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Brian P Kavanagh
- 1 The Research Institute.,2 Department of Critical Care Medicine.,9 Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,3 Interdepartmental Division of Critical Care Medicine.,8 Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Xu Y, Gu Q, Liu N, Yan Y, Yang X, Hao Y, Qu C. PPARγ Alleviates Right Ventricular Failure Secondary to Pulmonary Arterial Hypertension in Rats. Int Heart J 2017; 58:948-956. [PMID: 29151490 DOI: 10.1536/ihj.16-591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling leading to right ventricular hypertrophy (RVH) and failure. Peroxisome proliferator-activated receptor γ (PPARγ), a member of nuclear receptors, has been proved to ameliorate PAH. However, its effect on PAH-induced right ventricular failure (RVF) remains unknown. Therefore, we investigated the therapeutic potential of PPARγ in preventing monocrotaline (MCT)-induced RV dysfunction. The PAH model was induced by MCT administration. Male rats were administered with MCT to develop PAH and RVF formed by approximately day 30. Significant increase in RV area, RVAW resulted in an ascending RV index. However, the LV function including EF, FS, and LVID did not change significantly. PPARγ agonist prevented PAH-induced RVF by preserving RV index and preventing RVH. PPARγ's beneficial effects seem to result from various factors, including anti-apoptosis, preservation RV index, reversal of inflammation, improvement of glucolipid metabolism, reduction of ROS. In a word, PPARγ agonist prevents the development of RVF.
Collapse
Affiliation(s)
- Ying Xu
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Qin Gu
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Ning Liu
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Yan Yan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University
| | - Xilan Yang
- Department of Geriatric Medicine, The Second Affiliated Hospital of Nanjing Medical University
| | - Yingying Hao
- Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University
| | - Chen Qu
- Department of Geriatric Medicine, The Second Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
12
|
Dos Santos Lacerda D, Türck P, Gazzi de Lima-Seolin B, Colombo R, Duarte Ortiz V, Poletto Bonetto JH, Campos-Carraro C, Bianchi SE, Belló-Klein A, Linck Bassani V, Sander da Rosa Araujo A. Pterostilbene reduces oxidative stress, prevents hypertrophy and preserves systolic function of right ventricle in cor pulmonale model. Br J Pharmacol 2017; 174:3302-3314. [PMID: 28703274 DOI: 10.1111/bph.13948] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In cor pulmonale, the increased afterload imposed on the right ventricle (RV) generates a maladaptive response, impairing the contractile cardiac function. Oxidative mechanisms play an important role in the pathophysiology and progression of this disease. The administration of pterostilbene (PTS), a phytophenol with antioxidant potential, may represent a therapeutic option. In the present study, we evaluated the effect of PTS complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on hypertrophy, contractile function and oxidative parameters in the RV of rats with pulmonary hypertension, induced by the administration of monocrotaline (MCT). EXPERIMENTAL APPROACH The rats received daily doses of the PTS : HPβCD complex at 25, 50 or 100 mg·kg-1 , p.o., for 14 days. The diastolic function, E/A ratio, and systolic function, shortening fraction, fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE) of the RV were determined by echocardiography. KEY RESULTS The PTS : HPβCD complex reduced the production of NADPH oxidase-dependent superoxide anions and oxidative stress in the RV of MCT-treated rats in a dose-dependent manner. At higher doses it prevented the reduction in FAC and TAPSE in MCT-treated animals. CONCLUSIONS AND IMPLICATIONS The PTS : HPβCD complex prevented the maladaptative remodelling and protected systolic function in the RV of rats with pulmonary hypertension. These cardioprotective mechanisms may be related, in part, to the antioxidant potential of PTS, favoured by the increased p.o. bioavailability promoted by the presence of HPβCD in the complex.
Collapse
Affiliation(s)
- Denise Dos Santos Lacerda
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Patrick Türck
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Gazzi de Lima-Seolin
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Rafael Colombo
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Vanessa Duarte Ortiz
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Jéssica Hellen Poletto Bonetto
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Cristina Campos-Carraro
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Sara Elis Bianchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valquiria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciência Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
13
|
Mahjoub Y, Malaquin S, Abou Arab O, Mourier G, Lorne E, Salomon A, Kamel S, Dupont H, Ducancel F. Echocardiographic Evaluation of the Acute Cardiovascular Effects of an Endothelin-Like Peptide Extracted from the Venom of Atractaspis irregularis. Cardiovasc Toxicol 2017; 17:208-214. [PMID: 27358047 DOI: 10.1007/s12012-016-9376-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sarafotoxin-i3 from Atractaspis irregularis is a long sarafotoxin with an extended C terminus extension. Sarafotoxin-b from Atractaspis engaddensis is shorter by four amino acids. These peptides belong to the endothelin-like peptide family with a high sequence homology and similar three-dimensional structure. They act on endothelin receptors situated on the membrane of endothelial and smooth muscle cells. However, SRTX-i 3, despite a high toxicity, has a very low affinity for endothelin receptors compared to SRTX-b. The present work was carried out in order to compare the precise in vivo cardiovascular effect of SRTX-b and SRTX-i3. Male Wistar rats were anesthetized and mechanically ventilated. Doppler echocardiography was performed to measure left and right ventricular functions. The rats were divided into three groups that received intravenous injections of: saline, SRTX-b or SRTX-i3. All measurements were taken at baseline, at 1 min and at 6 min after injection. Both toxins impaired cardiac output. SRTX-b impaired left ventricular function, while SRTX-i3 increased airway pressures and led to acute right ventricular dilatation associated with a decreased tricuspid annulus peak systolic velocity. SRTX-b and SRTX-i3 appear to exert toxic effects via different mechanisms, SRTX-b impairs left ventricular function, while SRTX-i3 increases airway pressures and impairs right ventricular function.
Collapse
Affiliation(s)
- Yazine Mahjoub
- Unité de réanimation chirurgicale, Pôle d'Anesthésie Réanimation et médecine d'urgence, CHU Amiens Nord, Place Victor Pauchet, 80054, Amiens cedex, France.
- Unité INSERM U1088, Amiens, France.
| | - Stéphanie Malaquin
- Unité de réanimation chirurgicale, Pôle d'Anesthésie Réanimation et médecine d'urgence, CHU Amiens Nord, Place Victor Pauchet, 80054, Amiens cedex, France
- Unité INSERM U1088, Amiens, France
| | - Osama Abou Arab
- Unité de réanimation chirurgicale, Pôle d'Anesthésie Réanimation et médecine d'urgence, CHU Amiens Nord, Place Victor Pauchet, 80054, Amiens cedex, France
- Unité INSERM U1088, Amiens, France
| | - Gilles Mourier
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA Saclay, 91191, Gif sur Yvette, France
| | - Emmanuel Lorne
- Unité de réanimation chirurgicale, Pôle d'Anesthésie Réanimation et médecine d'urgence, CHU Amiens Nord, Place Victor Pauchet, 80054, Amiens cedex, France
- Unité INSERM U1088, Amiens, France
| | - Alexis Salomon
- Unité de réanimation chirurgicale, Pôle d'Anesthésie Réanimation et médecine d'urgence, CHU Amiens Nord, Place Victor Pauchet, 80054, Amiens cedex, France
- Unité INSERM U1088, Amiens, France
| | | | - Hervé Dupont
- Unité de réanimation chirurgicale, Pôle d'Anesthésie Réanimation et médecine d'urgence, CHU Amiens Nord, Place Victor Pauchet, 80054, Amiens cedex, France
- Unité INSERM U1088, Amiens, France
| | - Frédéric Ducancel
- CEA, iMETI, Service d'Immuno Virologie (SIV), CEA Fontenay-aux-Roses, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Kaneko H, Neuss M, Weissenborn J, Butter C. Role of Right Ventricular Dysfunction and Diabetes Mellitus in N-terminal pro-B-type Natriuretic Peptide Response of Patients With Severe Mitral Regurgitation and Heart Failure After MitraClip. Int Heart J 2017; 58:225-231. [DOI: 10.1536/ihj.16-255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hidehiro Kaneko
- Department of Cardiology, Heart Center Brandenburg, Department of Cardiology, Medical School Brandenburg
| | - Michael Neuss
- Department of Cardiology, Heart Center Brandenburg, Department of Cardiology, Medical School Brandenburg
| | - Jens Weissenborn
- Department of Cardiology, Heart Center Brandenburg, Department of Cardiology, Medical School Brandenburg
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg, Department of Cardiology, Medical School Brandenburg
| |
Collapse
|
15
|
Shifrin Y, Sadeghi S, Pan J, Jain A, Fajardo AF, McNamara PJ, Belik J. Maternal-pup interaction disturbances induce long-lasting changes in the newborn rat pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1186-98. [PMID: 26342088 DOI: 10.1152/ajplung.00044.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
The factors accounting for the pathological maintenance of a high pulmonary vascular (PV) resistance postnatally remain elusive, but neonatal stressors may play a role in this process. Cross-fostering in the immediate neonatal period is associated with adult-onset vascular and behavioral changes, likely triggered by early-in-life stressors. In hypothesizing that fostering newborn rats induces long-lasting PV changes, we evaluated them at 14 days of age during adulthood and compared the findings with animals raised by their biological mothers. Fostering resulted in reduced maternal-pup contact time when compared with control newborns. At 2 wk of age, fostered rats exhibited reduced pulmonary arterial endothelium-dependent relaxation secondary to downregulation of tissue endothelial nitric oxide synthase expression and tetrahydrobiopterin deficiency-induced uncoupling. These changes were associated with neonatal onset-increased ANG II receptor type 1 expression, PV remodeling, and right ventricular hypertrophy that persisted into adulthood. The pulmonary arteries of adult-fostered rats exhibited a higher contraction dose response to ANG II and thromboxane A2, the latter of which was abrogated by the oxidant scavenger Tempol. In conclusion, fostering-induced neonatal stress induces long-standing PV changes modulated via the renin-angiotensin system.
Collapse
Affiliation(s)
- Yulia Shifrin
- Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Sina Sadeghi
- Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Jingyi Pan
- Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Amish Jain
- Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andres F Fajardo
- Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Patrick J McNamara
- Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jaques Belik
- Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|