1
|
Dragoi IT, Rezus C, Burlui AM, Bratoiu I, Rezus E. Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:19. [PMID: 39859001 PMCID: PMC11766816 DOI: 10.3390/medicina61010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Systemic sclerosis (SSc) is an immuno-inflammatory rheumatic disease that can affect both the skin and internal organs through fibrosis. Pulmonary arterial hypertension (PAH) is one of the most severe secondary complications. Structural changes in the vascular bed lead to increased pressures in the pulmonary circulation, severely impacting the right heart and significantly affecting mortality. The gold standard for diagnosing PAH is right heart catheterization (RHC), an invasive method for measuring cardiac pressure. Due to the high risk of complications, procedural difficulties, and significant costs, non-invasive screening for SSc-PAH has garnered significant interest. Echocardiography is likely the most important screening tool, providing structural and functional information about the right heart through measurements that have proven their utility over time. In addition to imagistic investigations, serum biomarkers aid in identifying patients at risk for PAH and can provide prognostic information. Currently, well-known serum biomarkers (NT-proBNP, uric acid) are used in screening; however, in recent years, researchers have highlighted new biomarkers that can enhance diagnostic accuracy for SSc patients. Pulmonary involvement can also be assessed through pulmonary function tests, which, using established thresholds, can provide additional information and help select patients requiring RHC. In conclusion, given the invasiveness of RHC, non-invasive screening methods are particularly important for SSc patients.
Collapse
Affiliation(s)
- Ioan Teodor Dragoi
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.T.D.); (I.B.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- IIIrd Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.T.D.); (I.B.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.T.D.); (I.B.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (I.T.D.); (I.B.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| |
Collapse
|
2
|
Atzeni IM, Al-Adwi Y, Doornbos-van der Meer B, Roozendaal C, Stel A, van Goor H, Gan CT, Dickinson M, Timens W, Smit AJ, Westra J, Mulder DJ. The soluble receptor for advanced glycation end products is potentially predictive of pulmonary arterial hypertension in systemic sclerosis. Front Immunol 2023; 14:1189257. [PMID: 37409127 PMCID: PMC10318928 DOI: 10.3389/fimmu.2023.1189257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) are the leading causes of death in systemic sclerosis (SSc). Until now, no prospective biomarker to predict new onset of SSc-ILD or SSc-PAH in patients with SSc has reached clinical application. In homeostasis, the receptor for advanced glycation end products (RAGE) is expressed in lung tissue and involved in cell-matrix adhesion, proliferation and migration of alveolar epithelial cells, and remodeling of the pulmonary vasculature. Several studies have shown that sRAGE levels in serum and pulmonary tissue vary according to the type of lung-related complication. Therefore, we investigated levels of soluble RAGE (sRAGE) and its ligand high mobility group box 1 (HMGB1) in SSc and their abilities to predict SSc-related pulmonary complications. Methods One hundred eighty-eight SSc patients were followed retrospectively for the development of ILD, PAH, and mortality for 8 years. Levels of sRAGE and HMGB1 were measured in serum by ELISA. Kaplan-Meier survival curves were performed to predict lung events and mortality and event rates were compared with a log-rank test. Multiple linear regression analysis was performed to examine the association between sRAGE and important clinical determinants. Results At baseline, levels of sRAGE were significantly higher in SSc-PAH-patients (median 4099.0 pg/ml [936.3-6365.3], p = 0.011) and lower in SSc-ILD-patients (735.0 pg/ml [IQR 525.5-1988.5], p = 0.001) compared to SSc patients without pulmonary involvement (1444.5 pg/ml [966.8-2276.0]). Levels of HMGB1 were not different between groups. After adjusting for age, gender, ILD, chronic obstructive pulmonary disease, anti-centromere antibodies, the presence of puffy fingers or sclerodactyly, use of immunosuppression, antifibrotic therapy, or glucocorticoids, and use of vasodilators, higher sRAGE levels remained independently associated with PAH. After a median follow-up of 50 months (25-81) of patients without pulmonary involvement, baseline sRAGE levels in the highest quartile were predictive of development of PAH (log-rank p = 0.01) and of PAH-related mortality (p = 0.001). Conclusions High systemic sRAGE at baseline might be used as a prospective biomarker for patients with SSc at high risk to develop new onset of PAH. Moreover, high sRAGE levels could predict lower survival rates due to PAH in patients with SSc.
Collapse
Affiliation(s)
- Isabella M. Atzeni
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Yehya Al-Adwi
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Alja Stel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - C. Tji Gan
- Department of Pulmonary Diseases and Tuberculosis, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Michael Dickinson
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Andries J. Smit
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Zhang Q, Chen Y, Wang Q, Wang Y, Feng W, Chai L, Liu J, Li D, Chen H, Qiu Y, Shen N, Shi X, Xie X, Li M. HMGB1-induced activation of ER stress contributes to pulmonary artery hypertension in vitro and in vivo. Respir Res 2023; 24:149. [PMID: 37268944 DOI: 10.1186/s12931-023-02454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and pulmonary artery remodeling through ER stress activation. METHODS Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell proliferation and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 (ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the development of PAH. The ultrastructure of ER was observed by transmission electron microscopy. RESULTS In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phenylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyrazine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis. CONCLUSIONS The present study provides a novel insight to understand the pathogenesis of PAH and suggests that targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xiangyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Hernández-Díazcouder A, González-Ramírez J, Sanchez F, Leija-Martínez JJ, Martínez-Coronilla G, Amezcua-Guerra LM, Sánchez-Muñoz F. Negative Effects of Chronic High Intake of Fructose on Lung Diseases. Nutrients 2022; 14:nu14194089. [PMID: 36235741 PMCID: PMC9571075 DOI: 10.3390/nu14194089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the modern diet, excessive fructose intake (>50 g/day) had been driven by the increase, in recent decades, of the consumption of sugar-sweetened beverages. This phenomenon has dramatically increased within the Caribbean and Latin American regions. Epidemiological studies show that chronic high intake of fructose related to sugar-sweetened beverages increases the risk of developing several non-communicable diseases, such as chronic obstructive pulmonary disease and asthma, and may also contribute to the exacerbation of lung diseases, such as COVID-19. Evidence supports several mechanisms—such as dysregulation of the renin−angiotensin system, increased uric acid production, induction of aldose reductase activity, production of advanced glycation end-products, and activation of the mTORC1 pathway—that can be implicated in lung damage. This review addresses how these pathophysiologic and molecular mechanisms may explain the lung damage resulting from high intake of fructose.
Collapse
Affiliation(s)
| | - Javier González-Ramírez
- Cellular Biology Laboratory, Faculty of Nursing, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21100, Mexico
| | - Fausto Sanchez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana Xochimilco, Mexico City 04960, Mexico
| | - José J. Leija-Martínez
- Master and Doctorate Program in Medical, Dental, and Health Sciences, Faculty of Medicine, Universidad Nacional Autónoma de México Campus Ciudad Universitaria, Mexico City 04510, Mexico
- Research Laboratory of Pharmacology, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Gustavo Martínez-Coronilla
- Histology Laboratory, Faculty of Medicine, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21100, Mexico
| | - Luis M. Amezcua-Guerra
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-5573-2911 (ext. 21310)
| |
Collapse
|
5
|
Smits AJ, Botros L, Mol MA, Ziesemer KA, Wilkins MR, Vonk Noordegraaf A, Bogaard HJ, Aman J. A Systematic Review with Meta-analysis of Biomarkers for detection of Pulmonary Arterial Hypertension. ERJ Open Res 2022; 8:00009-2022. [PMID: 35651362 PMCID: PMC9149393 DOI: 10.1183/23120541.00009-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Rationale The blood is a rich source of potential biomarkers for the diagnosis of idiopathic and hereditary pulmonary arterial hypertension (iPAH and hPAH, referred to as “PAH”). While a lot of biomarkers have been identified for PAH, the clinical utility of these biomarkers often remains unclear. Here, we performed an unbiased meta-analysis of published biomarkers to identify biomarkers with the highest performance for detection of PAH. Methods A literature search (in PubMed, Embase.com, Clarivate Analytics/Web of Science Core Collection and Wiley/Cochrane Library) was performed up to 28 January 2021. Primary end points were blood biomarker levels in PAH versus asymptomatic controls or patients suspected of pulmonary hypertension (PH) with proven normal haemodynamic profiles. Results 149 articles were identified by the literature search. Meta-analysis of 26 biomarkers yielded 17 biomarkers that were differentially expressed in PAH and non-PH control subjects. Red cell distribution width, low density lipid-cholesterol, d-dimer, N-terminal prohormone of brain natriuretic protein (NT-proBNP), interleukin-6 (IL-6) and uric acid were biomarkers with the largest observed differences, largest sample sizes and a low risk of publication bias. Receiver operating characteristic curves and sensitivity/specificity analyses demonstrated that NT-proBNP had a high sensitivity, but low specificity for PAH. For the other biomarkers, insufficient data on diagnostic accuracy with receiver operating characteristic curves were available for meta-analysis. Conclusion This meta-analysis validates NT-proBNP as a biomarker with high sensitivity for PAH, albeit with low specificity. The majority of biomarkers evaluated in this meta-analysis lacked either external validation or data on diagnostic accuracy. Further validation studies are required as well as studies that test combinations of biomarkers to improve specificity. Meta-analysis of 26 biomarkers yielded 17 differentially expressed biomarkers in PAH. NT-proBNP had the highest diagnostic accuracy but had a low specificity for PAH. Other markers, including IL-6, RDW, LDL-c, D-dimer and UA, lacked clinical validation.https://bit.ly/3J4YAyC
Collapse
|
6
|
Diekmann F, Chouvarine P, Sallmon H, Meyer-Kobbe L, Kieslich M, Plouffe BD, Murthy SK, Lichtinghagen R, Legchenko E, Hansmann G. Soluble Receptor for Advanced Glycation End Products (sRAGE) Is a Sensitive Biomarker in Human Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168591. [PMID: 34445297 PMCID: PMC8395319 DOI: 10.3390/ijms22168591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition with an unmet need for early diagnosis, better monitoring, and risk stratification. The receptor for advanced glycation end products (RAGE) is activated in response to hypoxia and vascular injury, and is associated with inflammation, cell proliferation and migration in PAH. For the adult cohort, we recruited 120 patients with PAH, 83 with idiopathic PAH (IPAH) and 37 with connective tissue disease-associated PAH (CTD-PAH), and 48 controls, and determined potential plasma biomarkers by enzyme-linked immunoassay. The established heart failure marker NTproBNP and IL-6 plasma levels were several-fold higher in both adult IPAH and CTD-PAH patients versus controls. Plasma soluble RAGE (sRAGE) was elevated in IPAH patients (3044 ± 215.2 pg/mL) and was even higher in CTD-PAH patients (3332 ± 321.6 pg/mL) versus controls (1766 ± 121.9 pg/mL; p < 0.01). All three markers were increased in WHO functional class II+III PAH versus controls (p < 0.001). Receiver-operating characteristic analysis revealed that sRAGE has diagnostic accuracy comparable to prognostic NTproBNP, and even outperforms NTproBNP in the distinction of PAH FC I from controls. Lung tissue RAGE expression was increased in IPAH versus controls (mRNA) and was located predominantly in the PA intima, media, and inflammatory cells in the perivascular space (immunohistochemistry). In the pediatric cohort, plasma sRAGE concentrations were higher than in adults, but were similar in PH (n = 10) and non-PH controls (n = 10). Taken together, in the largest adult sRAGE PAH study to date, we identify plasma sRAGE as a sensitive and accurate PAH biomarker with better performance than NTproBNP in the distinction of mild PAH from controls.
Collapse
Affiliation(s)
- Franziska Diekmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Hannes Sallmon
- Department of Pediatric Cardiology, Charité University Medical Center, 13353 Berlin, Germany; (H.S.); (M.K.)
| | - Louisa Meyer-Kobbe
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Moritz Kieslich
- Department of Pediatric Cardiology, Charité University Medical Center, 13353 Berlin, Germany; (H.S.); (M.K.)
| | - Brian D. Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (B.D.P.); (S.K.M.)
- Department of STEM, Regis College, Weston, MA 02493, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (B.D.P.); (S.K.M.)
- Flaskworks, LLC, Boston, MA 02118, USA
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany; (F.D.); (P.C.); (L.M.-K.); (E.L.)
- Correspondence: ; Tel.: +49-511-532-9594
| |
Collapse
|
7
|
Bauer Y, de Bernard S, Hickey P, Ballard K, Cruz J, Cornelisse P, Chadha-Boreham H, Distler O, Rosenberg D, Doelberg M, Roux S, Nayler O, Lawrie A. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort. Eur Respir J 2021; 57:13993003.02591-2020. [PMID: 33334933 PMCID: PMC8276065 DOI: 10.1183/13993003.02591-2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating complication of systemic sclerosis (SSc). Screening for PAH in SSc has increased detection, allowed early treatment for PAH and improved patient outcomes. Blood-based biomarkers that reliably identify SSc patients at risk of PAH, or with early disease, would significantly improve screening, potentially leading to improved survival, and provide novel mechanistic insights into early disease. The main objective of this study was to identify a proteomic biomarker signature that could discriminate SSc patients with and without PAH using a machine learning approach and to validate the findings in an external cohort. Serum samples from patients with SSc and PAH (n=77) and SSc without pulmonary hypertension (non-PH) (n=80) were randomly selected from the clinical DETECT study and underwent proteomic screening using the Myriad RBM Discovery platform consisting of 313 proteins. Samples from an independent validation SSc cohort (PAH n=22 and non-PH n=22) were obtained from the University of Sheffield (Sheffield, UK). Random forest analysis identified a novel panel of eight proteins, comprising collagen IV, endostatin, insulin-like growth factor binding protein (IGFBP)-2, IGFBP-7, matrix metallopeptidase-2, neuropilin-1, N-terminal pro-brain natriuretic peptide and RAGE (receptor for advanced glycation end products), that discriminated PAH from non-PH in SSc patients in the DETECT Discovery Cohort (average area under the receiver operating characteristic curve 0.741, 65.1% sensitivity/69.0% specificity), which was reproduced in the Sheffield Confirmatory Cohort (81.1% accuracy, 77.3% sensitivity/86.5% specificity). This novel eight-protein biomarker panel has the potential to improve early detection of PAH in SSc patients and may provide novel insights into the pathogenesis of PAH in the context of SSc. Early screening for pulmonary arterial hypertension in patients with systemic sclerosis improves patient outcome. This study identified a novel eight-protein biomarker panel that has the potential to assist early detection of PAH in this patient group.https://bit.ly/373BNkL
Collapse
Affiliation(s)
- Yasmina Bauer
- Galapagos GmbH, Basel, Switzerland.,Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Peter Hickey
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | - Oliver Distler
- Dept of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 2021; 54:e13048. [PMID: 33948998 PMCID: PMC8168414 DOI: 10.1111/cpr.13048] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES High-mobility group box-1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin-related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1-mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues. METHODS Primary cultured PASMCs were obtained from male Sprague-Dawley (SD) rats. We detected RNA levels by qRT-PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed-chest right heart catheterization. RESULTS HMGB1 increased Drp1 phosphorylation and Drp1-dependent mitochondrial fragmentation through extracellular signal-regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1-induced reductions of BMPR2 and Id1, and diminished HMGB1-induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi-1 or blockage of autophagy by chloroquine prevented PAH development in MCT-induced rats PAH model. CONCLUSIONS HMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.
Collapse
Affiliation(s)
- Wei Feng
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jian Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xin Yan
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Limin Chai
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jin Liu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Zhan Qu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| |
Collapse
|
9
|
Jin Q, Zhao ZH, Luo Q, Zhao Q, Yan L, Zhang Y, Li X, Yang T, Zeng QX, Xiong CM, Liu ZH. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: State of the art. World J Clin Cases 2020; 8:2679-2702. [PMID: 32742980 PMCID: PMC7360712 DOI: 10.12998/wjcc.v8.i13.2679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a complex chronic disease in which pulmonary artery stenosis or obstruction caused by organized thrombus can lead to increased pulmonary artery pressure and pulmonary vascular resistance, ultimately triggering progressive right heart failure and death. Currently, its exact mechanism is not fully understood. Pulmonary endarterectomy (PEA) has immediate effects with low perioperative mortality and satisfactory prognosis in experienced expert centers for CTEPH patients with proximal lesions. Nevertheless, 37% of patients are deemed unsuitable for PEA surgery due to comorbidities and other factors, and nearly half of the operated patients have residual or recurrent pulmonary hypertension. Riociguat is the only approved drug for CTEPH, although its effect is limited. Balloon pulmonary angioplasty (BPA) is a promising alternative treatment for patients with CTEPH. After more than 30 years of development and refinements, emerging evidence has confirmed its role in patients with inoperable CTEPH or residual/recurrent pulmonary hypertension, with acceptable complications and comparable long-term prognosis to PEA. This review summarizes the pathophysiology of CTEPH, BPA history and development, therapeutic principles, indications and contraindications, interventional procedures, imaging modalities, efficacy and prognosis, complications and management, bridging and hybrid therapies, ongoing clinical trials and future prospects.
Collapse
Affiliation(s)
- Qi Jin
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhi-Hui Zhao
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qin Luo
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qing Zhao
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Yan
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yi Zhang
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xin Li
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Tao Yang
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qi-Xian Zeng
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chang-Ming Xiong
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhi-Hong Liu
- State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
10
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
11
|
Lin Q, Fan C, Skinner JT, Hunter EN, Macdonald AA, Illei PB, Yamaji-Kegan K, Johns RA. RELMα Licenses Macrophages for Damage-Associated Molecular Pattern Activation to Instigate Pulmonary Vascular Remodeling. THE JOURNAL OF IMMUNOLOGY 2019; 203:2862-2871. [PMID: 31611261 DOI: 10.4049/jimmunol.1900535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Pulmonary hypertension (PH) is a debilitating disease characterized by remodeling of the lung vasculature. In rodents, resistin-like molecule-α (RELMα, also known as HIMF or FIZZ1) can induce PH, but the signaling mechanisms are still unclear. In this study, we used human lung samples and a hypoxia-induced mouse model of PH. We found that the human homolog of RELMα, human (h) resistin, is upregulated in macrophage-like inflammatory cells from lung tissues of patients with idiopathic PH. Additionally, at PH onset in the mouse model, we observed RELMα-dependent lung accumulation of macrophages that expressed high levels of the key damage-associated molecular pattern (DAMP) molecule high-mobility group box 1 (HMGB1) and its receptor for advanced glycation end products (RAGE). In vitro, RELMα/hresistin-induced macrophage-specific HMGB1/RAGE expression and facilitated HMGB1 nucleus-to-cytoplasm translocation and extracellular secretion. Mechanistically, hresistin promoted HMGB1 posttranslational lysine acetylation by preserving the NAD+-dependent deacetylase sirtuin (Sirt) 1 in human macrophages. Notably, the hresistin-stimulated macrophages promoted apoptosis-resistant proliferation of human pulmonary artery smooth muscle cells in an HMGB1/RAGE-dependent manner. In the mouse model, RELMα also suppressed the Sirt1 signal in pulmonary macrophages in the early posthypoxic period. Notably, recruited macrophages in the lungs of these mice carried the RELMα binding partner Bruton tyrosine kinase (BTK). hResistin also mediated the migration of human macrophages by activating BTK in vitro. Collectively, these data reveal a vascular-immune cellular interaction in the early PH stage and suggest that targeting RELMα/DAMP-driven macrophages may offer a promising strategy to treat PH and other related vascular inflammatory diseases.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Chunling Fan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - John T Skinner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Elizabeth N Hunter
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Andrew A Macdonald
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Peter B Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| |
Collapse
|
12
|
Lin Q, Fan C, Gomez-Arroyo J, Van Raemdonck K, Meuchel LW, Skinner JT, Everett AD, Fang X, Macdonald AA, Yamaji-Kegan K, Johns RA. HIMF (Hypoxia-Induced Mitogenic Factor) Signaling Mediates the HMGB1 (High Mobility Group Box 1)-Dependent Endothelial and Smooth Muscle Cell Crosstalk in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2505-2519. [PMID: 31597444 DOI: 10.1161/atvbaha.119.312907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE HIMF (hypoxia-induced mitogenic factor; also known as FIZZ1 [found in inflammatory zone-1] or RELM [resistin-like molecule-α]) is an etiological factor of pulmonary hypertension (PH) in rodents, but its underlying mechanism is unclear. We investigated the immunomodulatory properties of HIMF signaling in PH pathogenesis. Approach and Results: Gene-modified mice that lacked HIMF (KO [knockout]) or overexpressed HIMF human homolog resistin (hResistin) were used for in vivo experiments. The pro-PH role of HIMF was verified in HIMF-KO mice exposed to chronic hypoxia or sugen/hypoxia. Mechanistically, HIMF/hResistin activation triggered the HMGB1 (high mobility group box 1) pathway and RAGE (receptor for advanced glycation end products) in pulmonary endothelial cells (ECs) of hypoxic mouse lungs in vivo and in human pulmonary microvascular ECs in vitro. Treatment with conditioned medium from hResistin-stimulated human pulmonary microvascular ECs induced an autophagic response, BMPR2 (bone morphogenetic protein receptor 2) defects, and subsequent apoptosis-resistant proliferation in human pulmonary artery (vascular) smooth muscle cells in an HMGB1-dependent manner. These effects were confirmed in ECs and smooth muscle cells isolated from pulmonary arteries of patients with idiopathic PH. HIMF/HMGB1/RAGE-mediated autophagy and BMPR2 impairment were also observed in pulmonary artery (vascular) smooth muscle cells of hypoxic mice, effects perhaps related to FoxO1 (forkhead box O1) dampening by HIMF. Experiments in EC-specific hResistin-overexpressing transgenic mice confirmed that EC-derived HMGB1 mediated the hResistin-driven pulmonary vascular remodeling and PH. CONCLUSIONS In HIMF-induced PH, HMGB1-RAGE signaling is pivotal for mediating EC-smooth muscle cell crosstalk. The humanized mouse data further support clinical implications for the HIMF/HMGB1 signaling axis and indicate that hResistin and its downstream pathway may constitute targets for the development of novel anti-PH therapeutics in humans.
Collapse
Affiliation(s)
- Qing Lin
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chunling Fan
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jose Gomez-Arroyo
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katrien Van Raemdonck
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lucas W Meuchel
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - John T Skinner
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen D Everett
- Division of Pediatric Cardiology, Department of Pediatrics (A.D.E.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xia Fang
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew A Macdonald
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kazuyo Yamaji-Kegan
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roger A Johns
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Zhang M, Zhang Y, Pang W, Zhai Z, Wang C. Circulating biomarkers in chronic thromboembolic pulmonary hypertension. Pulm Circ 2019; 9:2045894019844480. [PMID: 30942132 PMCID: PMC6552358 DOI: 10.1177/2045894019844480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a serious condition characterized with chronic organized thrombi that obstruct the pulmonary vessels, leading to pulmonary hypertension (PH) and ultimately right heart failure. Although CTEPH is the only form of PH that can be cured with surgical intervention, not all patients with CTEPH will be deemed operable. Some CTEPH patients still have a poor prognosis. Therefore, the determination of diagnostic and prognostic biomarkers of CTEPH is of great importance for the early intervention to improve prognosis of patients with CTEPH. Several markers related to multiple mechanisms of CTEPH have been recently identified as circulating diagnostic and prognostic biomarkers in these patients. However, the existing literature review of biomarkers of CTEPH is relatively sparse. In this article, we review recent advances in circulating biomarkers of CTEPH and describe future applications of these biomarkers in the management of CTEPH.
Collapse
Affiliation(s)
- Meng Zhang
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,2 Department of Respiratory and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,3 Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,4 National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yunxia Zhang
- 2 Department of Respiratory and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,3 Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,4 National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Wenyi Pang
- 2 Department of Respiratory and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,3 Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,4 National Clinical Research Center for Respiratory Diseases, Beijing, China.,5 Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhenguo Zhai
- 2 Department of Respiratory and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,3 Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,4 National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chen Wang
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,2 Department of Respiratory and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,3 Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,4 National Clinical Research Center for Respiratory Diseases, Beijing, China.,5 Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Prasad K. AGE-RAGE Stress in the Pathophysiology of Pulmonary Hypertension and its Treatment. Int J Angiol 2019; 28:71-79. [PMID: 31384104 DOI: 10.1055/s-0039-1687818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a rare and fatal disease characterized by elevation of pulmonary artery pressure ≥ 25 mm Hg. There are five groups of PH: (1) pulmonary artery (PA) hypertension (PAH), (2) PH due to heart diseases, (3) PH associated with lung diseases/hypoxia, (4) PH associated with chronic obstruction of PA, and (5) PH due to unclear and/or multifactorial mechanisms. The pathophysiologic mechanisms of group 1 have been studied in detail; however, those for groups 2 to 5 are not that well known. PH pathology is characterized by smooth muscle cells (SMC) proliferation, muscularization of peripheral PA, accumulation of extracellular matrix (ECM), plexiform lesions, thromboembolism, and recanalization of thrombi. Advanced glycation end products (AGE) and its receptor (RAGE) and soluble RAGE (sRAGE) appear to be involved in the pathogenesis of PH. AGE and its interaction with RAGE induce vascular hypertrophy through proliferation of vascular SMC, accumulation of ECM, and suppression of apoptosis. Reactive oxygen species (ROS) generated by interaction of AGE and RAGE modulates SMC proliferation, attenuate apoptosis, and constricts PA. Increased stiffness in the artery due to vascular hypertrophy, and vasoconstriction due to ROS resulted in PH. The data also suggest that reduction in consumption and formation of AGE, suppression of RAGE expression, blockage of RAGE ligand binding, elevation of sRAGE levels, and antioxidants may be novel therapeutic targets for prevention, regression, and slowing of progression of PH. In conclusion, AGE-RAGE stress may be involved in the pathogenesis of PH and the therapeutic targets should be the AGE-RAGE axis.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Dai M, Xiao R, Cai L, Ge T, Zhu L, Hu Q. HMGB1 is mechanistically essential in the development of experimental pulmonary hypertension. Am J Physiol Cell Physiol 2018; 316:C175-C185. [PMID: 30517029 DOI: 10.1152/ajpcell.00148.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is a mortal disease featuring pulmonary vascular constriction and remodeling, right heart failure, and eventual death. Several reports showed that high-mobility group box 1 (HMGB1) appears to be critical for the development of PH; the underlying mechanism, however, has not been revealed. Experiments in the present study demonstrated that HMGB1 levels were elevated in the lung tissue and blood plasma of rats after chronic hypoxia exposure and monocrotaline treatment. HMGB1 was originally located within the nucleus and translocated to the cytoplasm of pulmonary artery smooth muscle cells (PASMCs) upon hypoxia exposure, a process that appeared to be mediated by endogenous H2O2. Exposure to HMGB1 mobilized calcium signaling in PASMCs, a response that was attenuated by extracellular Ca2+ removal, Toll-like receptor 4 (TLR4) inhibition by TAK-242, or transient receptor potential channel (TRPC) suppression with 2-aminoethoxydiphenyl borate (2-APB) and SKF-96365. The sustained phosphorylation of the Akt pathway modulated HMGB1-induced migration of PASMCs. The blockage of HMGB1 with glycyrrhizin or anti-HMGB1 neutralizing antibody attenuated lung inflammation and PH establishment in rats after hypoxia exposure and monocrotaline treatment. The above findings reveal the mechanistic importance of HMGB1 in PH through TLR4- and TRPC-associated Ca2+ influx and Akt phosphorylation-driven PASMC migration.
Collapse
Affiliation(s)
- Mao Dai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Luyao Cai
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Tong Ge
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
16
|
Crucial role of RAGE in inappropriate increase of smooth muscle cells from patients with pulmonary arterial hypertension. PLoS One 2018; 13:e0203046. [PMID: 30180189 PMCID: PMC6122782 DOI: 10.1371/journal.pone.0203046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/14/2018] [Indexed: 01/21/2023] Open
Abstract
Background Pulmonary vascular remodeling of pulmonary arterial hypertension (PAH) is characterized by an inappropriate increase of vascular cells. The receptor for advanced glycation end products (RAGE) is a type I single-pass transmembrane protein belonging to the immunoglobulin superfamily and is involved in a broad range of hyperproliferative diseases. RAGE is also implicated in the etiology of PAH and is overexpressed in pulmonary artery smooth muscle cells (PASMCs) in patients with PAH. We examined the role of RAGE in the inappropriate increase of PASMCs in patients with PAH. Methods and results PASMCs were obtained from 12 patients with PAH including 9 patients with idiopathic PAH (IPAH) and 3 patients with heritable PAH (HPAH) (2 patients with BMPR2 mutation and one patient with SMAD9 mutation) who underwent lung transplantation. Western blot analysis and immunofluorescence staining revealed that RAGE and S100A8 and A9, ligands of RAGE, were overexpressed in IPAH and HPAH-PASMCs in the absence of any external growth stimulus. PDGF-BB (10 ng/mL) up-regulated the expression of RAGE in IPAH and HPAH-PASMCs. PAH-PASMCs are hyperplastic in the absence of any external growth stimulus as assessed by 3H-thymidine incorporation. This result indicates overgrowth characterized by continued growth under a condition of no growth stimulation in PAH-PASMCs. PDGF-BB stimulation caused a higher growth rate of PAH-PASMCs than that of non-PAH-PASMCs. AS-1, an inhibitor of TIR domain-mediated RAGE signaling, significantly inhibited overgrowth characterized by continued growth under a condition of no growth stimulation in IPAH and HPAH-PASMCs (P<0.0001). Furthermore, AS-1 significantly inhibited PDGF-stimulated proliferation of IPAH and HPAH-PASMCs (P<0.0001). Conclusions RAGE plays a crucial role in the inappropriate increase of PAH-PASMCs. Inhibition of RAGE signaling may be a new therapeutic strategy for PAH.
Collapse
|
17
|
Jia D, He Y, Zhu Q, Liu H, Zuo C, Chen G, Yu Y, Lu A. RAGE-mediated extracellular matrix proteins accumulation exacerbates HySu-induced pulmonary hypertension. Cardiovasc Res 2018; 113:586-597. [PMID: 28407046 DOI: 10.1093/cvr/cvx051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Aims Extracellular matrix (ECM) proteins accumulation contributes to the progression of pulmonary arterial hypertension (PAH), a rare and fatal cardiovascular condition defined by high pulmonary arterial pressure, whether primary, idiopathic, or secondary to other causes. The receptor for advanced glycation end products (RAGE) is constitutively expressed in the lungs and plays an important role in ECM deposition. Nonetheless, the mechanisms by which RAGE mediates ECM deposition/formation in pulmonary arteries and its roles in PAH progression remain unclear. Methods and results Expression of RAGE and its activating ligands, S100/calgranulins and high mobility group box 1 (HMGB1), were increased in both human and mouse pulmonary arterial smooth muscle cells (PASMCs) under hypoxic conditions and were also strikingly upregulated in pulmonary arteries in hypoxia plus SU5416 (HySu)-induced PAH in mice. RAGE deletion alleviated pulmonary arterial pressure and restrained extracellular matrix accumulation in pulmonary arteries in HySu-induced PAH murine model. Moreover, blocking RAGE activity with a neutralizing antibody in human PASMCs, or RAGE deficiency in mouse PASMCs exposed to hypoxia, suppressed the expression of fibrotic proteins by reducing TGF-β1 expression. RAGE reconstitution in deficient mouse PASMCs restored hypoxia-stimulated TGF-β1 production via ERK1/2 and p38 MAPK pathway activation and subsequently increased ECM protein expression. Interestingly, HMGB1 acting on RAGE, not toll-like receptor 4 (TLR4), induced ECM deposition in PASMCs. Finally, in both idiopathic PAH patients and HySu-induced PAH mice, soluble RAGE (sRAGE) levels in serum were significantly elevated compared to those in controls. Conclusions Activation of RAGE facilitates the development of hypoxia-induced pulmonary hypertension by increase of ECM deposition in pulmonary arteries. Our results indicate that sRAGE may be a potential biomarker for PAH diagnosis and disease severity, and that RAGE may be a promising target for PAH treatment.
Collapse
Affiliation(s)
- Daile Jia
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Road, Shanghai 200025, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 yueyang Road, Shanghai 200031, China
| | - Yuhu He
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Road, Shanghai 200025, China
| | - Qian Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Road, Shanghai 200025, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 yueyang Road, Shanghai 200031, China
| | - Huan Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Road, Shanghai 200025, China
| | - Caojian Zuo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Road, Shanghai 200025, China
| | - Guilin Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 yueyang Road, Shanghai 200031, China
| | - Ying Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 yueyang Road, Shanghai 200031, China
| | - Ankang Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Road, Shanghai 200025, China
| |
Collapse
|
18
|
Higo K, Kubota K, Miyanaga S, Miyata M, Nakajo M, Jinguji M, Ohishi M. Impairment of Iodine-123-Metaiodobenzylguanidine (<sup>123</sup>I-MIBG) Uptake in Patients with Pulmonary Artery Hypertension. Int Heart J 2018; 59:112-119. [DOI: 10.1536/ihj.16-629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kenjuro Higo
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Kayoko Kubota
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Sunao Miyanaga
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Masaaki Miyata
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| |
Collapse
|
19
|
Miura M, Ikeda S, Yoshida T, Yamagata Y, Nakata T, Koga S, Koide Y, Kawano H, Maemura K. Deeper S Wave in Lead V5 and Broader Extent of T Wave Inversions in the Precordial Leads are Clinically Useful Electrocardiographic Parameters for Predicting Pulmonary Hypertension. Int Heart J 2018; 59:136-142. [DOI: 10.1536/ihj.16-647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Miyuki Miura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Satoshi Ikeda
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Takeo Yoshida
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Yuki Yamagata
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomoo Nakata
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Seiji Koga
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Yuji Koide
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
20
|
Fasting blood soluble RAGE may be causally implicated in impaired glucose metabolism in Chinese patients with primary hypertension. Gene 2018; 639:11-17. [DOI: 10.1016/j.gene.2017.09.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022]
|
21
|
Genetic Variants of the Receptor for Advanced Glycation End-products in Susceptibility to Type 2 Diabetes Mellitus in Primary Hypertensive Patients. Sci Rep 2017; 7:17207. [PMID: 29222432 PMCID: PMC5722821 DOI: 10.1038/s41598-017-17068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023] Open
Abstract
Diabetes mellitus is frequently comorbid with hypertension, which is approximately twice as common as diabetes mellitus in China. We designed a case-control association study to inspect the susceptibility of the receptor for advanced glycation end-products (RAGE) gene 6 variants to type 2 diabetes mellitus (T2DM) in 2199 patients with primary hypertension (1252 diabetic cases and 947 nondiabetic controls). The genotypes/alleles of −429T > C and 82Gly > Ser variants differed significantly between the two groups, and their associations with T2DM were significant after Bonferroni correction. Two variants, −374T > A and I/D, showed only marginal associations with T2DM. Haplotype analysis of above 4 significant variants indicated that a low-penetrance haplotype simultaneously bearing −429C and 82Ser alleles was overrepresented in cases relative to controls (4.75% vs. 1.72%, P < 0.001). Moreover, the predictive capability of 6 variants was significantly superior to available risk factors, with better goodness-of-fit. A predictive nomogram of 4 baseline risk factors and 2 variants of statistical significance was structured, with a good predictive accuracy (C-index = 0.761, P < 0.001). Taken together, our findings highlighted a contributory role of the RAGE gene, especially its two functional variants −429T > C and 82Gly > Ser, in susceptibility to T2DM in primary hypertensive patients, which may aid early detection and risk assessment for high-risk individuals.
Collapse
|
22
|
Hatano M. Potential of Receptor for Advanced Glycation End-Products (RAGE) as an Eligible Biomarker for Therapy Evaluation in Patients With Pulmonary Hypertension. Int Heart J 2016; 57:132-3. [PMID: 26973280 DOI: 10.1536/ihj.16-073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|