1
|
Takeda S, Hoshiai R, Tanaka M, Izawa T, Yamate J, Kuramoto T, Kuwamura M. Myelin lesion in the aspartoacylase (Aspa) knockout rat, an animal model for Canavan disease. Exp Anim 2024; 73:347-356. [PMID: 38538326 PMCID: PMC11254489 DOI: 10.1538/expanim.23-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 07/12/2024] Open
Abstract
Canavan disease (CD) is a fatal hereditary neurological disorder caused by a mutation in the aspartoacylase (ASPA) gene and characterized by neurological signs and vacuolation in the central nervous system (CNS). The mutation inhibits the hydrolysis of N-acetyl-aspartate (NAA) resulting in accumulation of NAA in the CNS. A new Aspa-knockout rat was generated by transcription activator-like effector nuclease (TALEN) technology. Herein we describe the pathological and morphometrical findings in the brain and spinal cords of Aspa-knockout rats. Although Aspa-knockout rats did not show any neurological signs, vacuolation with swollen axons, hypomyelination, and activated swollen astrocytes were observed mainly in the brainstem reticular formation, ascending and descending motor neuron pathway, and in the olfactory tract. Morphometrical analysis revealed no obvious change in the number of neurons. These changes in the CNS are similar to human CD, suggesting that this animal model would be useful for further study of treatment and understanding the pathophysiology of human CD.
Collapse
Affiliation(s)
- Shuji Takeda
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Rika Hoshiai
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, 9 Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
2
|
Kuramoto T. Positional cloning of rat mutant genes reveals new functions of these genes. Exp Anim 2023; 72:1-8. [PMID: 36058846 PMCID: PMC9978133 DOI: 10.1538/expanim.22-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The laboratory rat (Rattus norvegicus) is a key model organism for biomedical research. Rats can be subjected to strict genetic and environmental controls. The rat's large body size is suitable for both surgical operations and repeated measurements of physiological parameters. These advantages have led to the development of numerous rat models for genetic diseases. Forward genetics is a proven approach for identifying the causative genes of these disease models but requires genome resources including genetic markers and genome sequences. Over the last few decades, rat genome resources have been developed and deposited in bioresource centers, which have enabled us to perform positional cloning in rats. To date, more than 100 disease-related genes have been identified by positional cloning. Since some disease models are more accessible in rats than mice, the identification of causative genes in these models has sometimes led to the discovery of novel functions of genes. As before, various mutant rats are also expected to be discovered and developed as disease models in the future. Thus, the forward genetics continues to be an important approach to find genes involved in disease phenotypes in rats. In this review, I provide an overview the development of rat genome resources and describe examples of positional cloning in rats in which novel gene functions have been identified.
Collapse
Affiliation(s)
- Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
3
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
4
|
Hoang Trung H, Yoshihara T, Nakao A, Hayashida K, Hirata Y, Shirasuna K, Kuwamura M, Nakagawa Y, Kaneko T, Mori Y, Asano M, Kuramoto T. Deficiency of the RIβ subunit of protein kinase A causes body tremor and impaired fear conditioning memory in rats. Sci Rep 2021; 11:2039. [PMID: 33479380 PMCID: PMC7820254 DOI: 10.1038/s41598-021-81515-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
The RIβ subunit of cAMP-dependent protein kinase (PKA), encoded by Prkar1b, is a neuronal isoform of the type I regulatory subunit of PKA. Mice lacking the RIβ subunit exhibit normal long-term potentiation (LTP) in the Schaffer collateral pathway of the hippocampus and normal behavior in the open-field and fear conditioning tests. Here, we combined genetic, electrophysiological, and behavioral approaches to demonstrate that the RIβ subunit was involved in body tremor, LTP in the Schaffer collateral pathway, and fear conditioning memory in rats. Genetic analysis of WTC-furue, a mutant strain with spontaneous tremors, revealed a deletion in the Prkar1b gene of the WTC-furue genome. Prkar1b-deficient rats created by the CRISPR/Cas9 system exhibited body tremor. Hippocampal slices from mutant rats showed deficient LTP in the Schaffer collateral-CA1 synapse. Mutant rats also exhibited decreased freezing time following contextual and cued fear conditioning, as well as increased exploratory behavior in the open field. These findings indicate the roles of the RIβ subunit in tremor pathogenesis and contextual and cued fear memory, and suggest that the hippocampal and amygdala roles of this subunit differ between mice and rats and that rats are therefore beneficial for exploring RIβ function.
Collapse
Affiliation(s)
- Hieu Hoang Trung
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Katsumi Hayashida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yoshiki Hirata
- Laboratory of Animal Reproduction, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinkuuourai-kita, Izumisano, Osaka, 598-8531, Japan
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan. .,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
6
|
Nishitani A, Nagayoshi H, Takenaka S, Asano M, Shimizu S, Ohno Y, Kuramoto T. Involvement of NMDA receptors in tremor expression in Aspa/Hcn1 double-knockout rats. Exp Anim 2020; 69:388-394. [PMID: 32507787 PMCID: PMC7677080 DOI: 10.1538/expanim.20-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We recently demonstrated that aspartoacylase (Aspa) and
hyperpolarization-activated cyclic nucleotide-gated potassium channel 1
(Hcn1) genes were causative of essential tremor (ET) in rats. This
finding was obtained using
Aspaem34Kyo/Hcn1A354V
double-mutant rats, but they were bred on a heterogeneous genetic background of two
strains, F344 and WTC. Here, we developed an
Aspaem34Kyo/Hcn1em1Kyo
double-knockout rat strain with a homogenous F344 genetic background and studied the
ability of glutamate receptor antagonists to suppress ET. The
F344-Aspa/Hcn1 double-knockout rats exhibited
spontaneous, intense body tremor equivalent to that in the double-mutant rats.
N-acetyl-aspartate (NAA), a substrate of ASPA, showed accumulation in
all brain regions and in the spinal cord. However,
N-acetyl-aspartyl-glutamate (NAAG), which is derived from NAA and
interacts with glutamatergic receptors, was decreased in the medulla oblongata of the
double-knockout rats. The tremor was suppressed by
3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid, an
N-methyl-D-aspartate (NMDA) receptor antagonist, in
F344-Aspa/Hcn1 double-knockout rats. The non-NMDA
glutamate receptor antagonist NBQX weakly inhibited the tremor, while the metabotropic
glutamate receptor antagonist LY341495 showed no effect. In addition, both NR2B
subunit-specific (Ro 25-6981) and NR2C/NR2D subunit-specific (cis-piperidine dicarboxylic
acid) NMDA receptor antagonists suppressed the tremor. These data indicated that the
pathogenesis of tremor in Aspa/Hcn1 double-knockout rats
involved ionotropic glutamate receptors, particularly NMDA receptors.
Collapse
Affiliation(s)
- Ai Nishitani
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruna Nagayoshi
- Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, 3-7-30 Habikino, Osaka 583-8555, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
7
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
8
|
Nishitani A, Yoshihara T, Tanaka M, Kuwamura M, Asano M, Tsubota Y, Kuramoto T. Muscle weakness and impaired motor coordination in hyperpolarization-activated cyclic nucleotide-gated potassium channel 1-deficient rats. Exp Anim 2019; 69:11-17. [PMID: 31292305 PMCID: PMC7004805 DOI: 10.1538/expanim.19-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) contribute
to spontaneous rhythmic activity in different tissues, including the heart and brain.
Deficiency in HCN1 function is associated with sick sinus syndrome in mice and epilepsy in
humans. We recently developed Hcn1-deficient rats and found that they
exhibit absence epilepsy. While rearing Hcn1-deficient rats, we noticed
loose muscle tension and abnormal gait. We therefore evaluated the muscle strength and
motor functions of Hcn1-deficient rats. When subjected to the wire hang
test, Hcn1-deficient rats fell down more easily than control F344 rats.
Grip strength of Hcn1-deficient rats was significantly smaller than F344
rats. In the inclined plane test, they exhibited a smaller maximum angle. In the rotarod
test, the latency to fall was shorter for Hcn1-deficient rats than F344
rats. In the footprint analysis, Hcn1-deficient rats exhibited smaller
step length and wider step width than F344 rats. Instead of poor motor coordination
ability and muscle weakness, Hcn1-deficient rats exhibited normal
electromyograms, muscle histology, and deep tendon reflex. These findings suggest that
HCN1 channels contribute to motor coordination and muscle strength, and that the muscle
weakness of Hcn1-deficient rats results from the involvement not of the
peripheral but of the central nervous system.
Collapse
Affiliation(s)
- Ai Nishitani
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Miyuu Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Tsubota
- Laboratory of Physiology, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka 597-0104, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
9
|
Downregulation of aspartoacylase during the progression of myelin breakdown in the dmy mutant rat with mitochondrial magnesium channel MRS2 defect. Brain Res 2019; 1718:169-175. [PMID: 31100216 DOI: 10.1016/j.brainres.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The dmy rat is an autosomal recessive mutant that exhibits severe rapid myelin breakdown throughout the central nervous system at 7-8 weeks of age. The dmy rat has a point mutation in Mrs2 gene, which encodes an essential component of the major electrophoretic Mg2+ influx system in the mitochondria. However, it remains unknown how mitochondrial dysfunction leads to the myelin breakdown. METHODS We focused on the aspartoacylase (ASPA) and mitochondrion-related metabolites to clarify the mechanism of myelin pathology in dmy rats. Aspa mRNA was significantly decreased in both the gray matter and the ventral white matter of spinal cord in the dmy rats from 4 to 8 weeks of age. Very faint immunohistochemical expression for ASPA was noted in the gray and white matter of the affected dmy rats at 8 weeks. Liquid chromatography mass spectrometry revealed no different amount of N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A (CoA) in neurons, in the brain and spinal cord between the dmy and control rats. CONCLUSION Our results indicated that the pyruvate dehydrogenase activity might be reduced due to the loss of Mg2+ transport activity in the mitochondria of the dmy rats, suggesting acetyl CoA production might be reduced. The number of oligodendrocytes was well preserved until 7 weeks. It is intriguing that prior to the myelin destruction at 7-8 weeks, disrupted expression of Aspa mRNA and ASPA protein undergoes from early stage of myelinogenesis. These data indicate that ASPA expression would be a useful index to evaluate a function of oligodendrocyte in the dmy rat.
Collapse
|
10
|
Serikawa T, Kunisawa N, Shimizu S, Kato M, Alves Iha H, Kinboshi M, Nishikawa H, Shirakawa Y, Voigt B, Nakanishi S, Kuramoto T, Kaneko T, Yamamoto T, Mashimo T, Sasa M, Ohno Y. Increased seizure sensitivity, emotional defects and cognitive impairment in PHD finger protein 24 (Phf24)-null rats. Behav Brain Res 2019; 369:111922. [PMID: 31039378 DOI: 10.1016/j.bbr.2019.111922] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Phf24 is known as Gαi-interacting protein (GINIP) and is associated with the GABAB receptor. To study the function of Phf24 protein in the central nervous system (CNS), we have newly developed Phf24-null rats and investigated their behavioral phenotypes, especially changes in seizure sensitivity, emotional responses and cognitive functions. Phf24-null rats did not exhibit any spontaneous seizures. However, they showed a higher sensitivity to pentylenetetrazol (PTZ)- or pilocarpine-induced convulsive seizures. Phf24-null rats also showed an elevated susceptibility to kindling development with repeated PTZ treatments, suggesting that Phf24 acts as an inhibitory modulator in epileptogenesis. Although young Phf24-null rats showed normal gross behaviors, elevated spontaneous locomotor activity, especially in terms of the circadian dark period, emotional hyper-reactivity, reduced anxiety behaviors in the elevated plus-maze (EPM) test, and cognitive deficits in the Morris water maze test were explicitly observed at older age (20-week-old). The present results suggest that Phf24 is essential for proper functioning of the CNS, especially in preventing epileptogenesis and controlling emotional and cognitive functions.
Collapse
Affiliation(s)
- Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Masaki Kato
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Higor Alves Iha
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan
| | | | | | - Birger Voigt
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Nakanishi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Chemistry and Biological Sciences, Fuculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan
| | - Takashi Yamamoto
- Department of Molecular Genetics, Graduate School of Mathematical and Life Sciences, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmacological Sciences, Osaka 569-1094, Japan.
| |
Collapse
|
11
|
Loss of HCN1 subunits causes absence epilepsy in rats. Brain Res 2019; 1706:209-217. [DOI: 10.1016/j.brainres.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
|
12
|
Menzikov SA, Morozov SG. Involvement of brain GABA AR-coupled Cl -/HCO 3--ATPase in phenol-induced the head-twitching and tremor responses in rats. Neurotoxicology 2018; 71:122-131. [PMID: 30590068 DOI: 10.1016/j.neuro.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
Phenol-induced neurotoxicity manifests as twitching/tremor and convulsions, but its molecular mechanisms underlying the behavioral responses remain unclear. We assessed the role of the brain Cl-/HCO3--ATPase in behavioral responses in rats following an in vivo intraperitoneal injection of phenol (20-160 mg/kg). Low concentrations of phenol (20-80 mg/kg) increased the ATPase activity as well as the head twitching responses in rat, whereas higher phenol concentrations (>60 mg/kg) increased the tremor but reduced the ATPase activity. At phenol concentrations >120 mg/kg, no ATPase activity was detected. Phenobarbital (10 mg/kg) and picrotoxin (1 mg/kg) as well as o-vanadate (2 mg/kg), significantly prevented (˜55-70%) the phenol-induced change in the behavioral responses and completely restored the enzyme activity. In vitro experiments confirmed that phenol stimulated the Cl-/HCO3--ATPase activity at low concentrations, but had no stimulating effect on other transport ATPases. Low doses of phenol increased the formation of phosphoprotein and the rate of ATP-consuming Cl- transport by the reconstituted enzyme. The present findings provide evidence that phenol-induced neurotoxicity involves the Cl-/HCO3--ATPase in the behavioral responses in mammals and indicate the potential benefit of this enzyme as a target for the treatment of head twitching and other types of tremor diseases.
Collapse
Affiliation(s)
- Sergey A Menzikov
- Institute of General Pathology and Pathological Physiology, 8, Baltiyskaya st., Moscow, 125315, Russia.
| | - Sergey G Morozov
- Institute of General Pathology and Pathological Physiology, 8, Baltiyskaya st., Moscow, 125315, Russia
| |
Collapse
|
13
|
Pan MK, Ni CL, Wu YC, Li YS, Kuo SH. Animal Models of Tremor: Relevance to Human Tremor Disorders. Tremor Other Hyperkinet Mov (N Y) 2018; 8:587. [PMID: 30402338 PMCID: PMC6214818 DOI: 10.7916/d89s37mv] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tremor is the most common movement disorder; however, the pathophysiology of tremor remains elusive. While several neuropathological alterations in tremor disorders have been observed in post-mortem studies of human brains, a full understanding of the relationship between brain circuitry alterations and tremor requires testing in animal models. Additionally, tremor animal models are critical for our understanding of tremor pathophysiology, and/or to serve as a platform for therapy development. Methods A PubMed search was conducted in May 2018 to identify published papers for review. Results The methodology used in most studies on animal models of tremor lacks standardized measurement of tremor frequency and amplitude; instead, these studies are based on the visual inspection of phenotypes, which may fail to delineate tremor from other movement disorders such as ataxia. Of the animal models with extensive tremor characterization, harmaline-induced rodent tremor models provide an important framework showing that rhythmic and synchronous neuronal activities within the olivocerebellar circuit can drive action tremor. In addition, dopamine-depleted monkey and mouse models may develop rest tremor, highlighting the role of dopamine in rest tremor generation. Finally, other animal models of tremor have involvement of the cerebellar circuitry, leading to altered Purkinje cell physiology. Discussion Both the cerebellum and the basal ganglia are likely to play a role in tremor generation. While the cerebellar circuitry can generate rhythmic movements, the nigrostriatal system is likely to modulate the tremor circuit. Tremor disorders are heterogeneous in nature. Therefore, each animal model may represent a subset of tremor disorders, which collectively can advance our understanding of tremor.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department of Medical Research, National Taiwan University, Taipei, TW
| | - Chun-Lun Ni
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeuh-Chi Wu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yong-Shi Li
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Kunisawa N, Shimizu S, Kato M, Iha HA, Iwai C, Hashimura M, Ogawa M, Kawaji S, Kawakita K, Abe K, Ohno Y. Pharmacological characterization of nicotine-induced tremor: Responses to anti-tremor and anti-epileptic agents. J Pharmacol Sci 2018; 137:162-169. [PMID: 29945769 DOI: 10.1016/j.jphs.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
We previously showed that nicotine evoked kinetic tremor by activating the inferior olive, which is implicated in the pathogenesis of essential tremor, via α7 nicotinic acetylcholine receptors. Here, we evaluated the effects of various anti-tremor and anti-epileptic agents on nicotine-induced tremor in mice to clarify the pharmacological characteristics of nicotine tremor. Drugs effective for essential tremor, propranolol, diazepam and phenobarbital, all significantly inhibited kinetic tremor induced by an intraperitoneal (i.p.) injection of nicotine (1 mg/kg). In contrast, none of the medications for Parkinson's disease, l-DOPA, bromocriptine or trihexyphenidyl, affected the nicotine tremor. Among the anti-epileptic agents examined, valproate, carbamazepine and ethosuximide, significantly inhibited nicotine-induced tremor. In addition, a selective T-type Ca2+ channel blocker, TTA-A2, also suppressed the nicotine tremor. However, neither gabapentin, topiramate, zonisamide nor levetiracetam significantly affected nicotine-induced tremor. The present results show that nicotine-induced tremor resembles essential tremor not only on the neural basis, but also in terms of the pharmacological responses to anti-tremor agents, implying that nicotine-induced tremor can serve as a model for essential tremor. In addition, it is suggested that anti-epileptic agents, which have stimulant actions on the GABAergic system or blocking actions on voltage-gated Na+ channels and T-type Ca2+ channels, can alleviate essential tremor.
Collapse
Affiliation(s)
- Naofumi Kunisawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masaki Kato
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Higor A Iha
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Chihiro Iwai
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Hashimura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mizuki Ogawa
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shohei Kawaji
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazuma Kawakita
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Keisuke Abe
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
15
|
Identification of Candidate Genes for Generalized Tonic-Clonic Seizures in Noda Epileptic Rat. Behav Genet 2017; 47:609-619. [PMID: 28936718 DOI: 10.1007/s10519-017-9870-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022]
Abstract
The Noda epileptic rat (NER) exhibits generalized tonic-clonic seizures (GTCS). A genetic linkage analysis identified two GTCS-associated loci, Ner1 on Chr 1 and Ner3 on Chr 5. The wild-type Ner1 and Ner3 alleles suppressed GTCS when combined in double-locus congenic lines, but not when present in single-locus congenic lines. Global expression analysis revealed that cholecystokinin B receptor (Cckbr) and suppressor of tumorigenicity 5 (St5), which map within Ner1, and PHD finger protein 24 (Phf24), which maps within Ner3, were significantly downregulated in NER. De novo BAC sequencing detected an insertion of an endogenous retrovirus sequence in intron 2 of the Phf24 gene in the NER genome, and PHF24 protein was almost absent in the NER brain. Phf24 encodes a Gαi-interacting protein involved in GABAB receptor signaling pathway. Based on these findings, we conclude that Cckbr, St5, and Phf24 are strong candidate genes for GTCS in NER.
Collapse
|