1
|
Marksteiner J, Dostal C, Ebner J, Szabó PL, Podesser BK, Baydar S, Goncalves AIA, Wagner A, Kratochwill K, Fichtinger P, Abraham D, Salzer I, Kubista H, Lilliu E, Hackl B, Sauer J, Todt H, Koenig X, Hilber K, Kiss A. Chronic administration of ivabradine improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Sci Rep 2025; 15:8991. [PMID: 40089543 PMCID: PMC11910634 DOI: 10.1038/s41598-025-92927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Duchenne muscular dystrophy (DMD), a severe muscle disease caused by mutations in the gene encoding for the intracellular protein dystrophin, is associated with impaired cardiac function and arrhythmias. A causative factor for complications in the dystrophic heart is abnormal calcium (Ca) handling in ventricular cardiomyocytes, and restoration of normal Ca homeostasis has emerged as therapeutic strategy. Here, we used a rodent model of DMD, the dystrophin-deficient DMDmdx rat, to test the following hypothesis: chronic administration of ivabradine (IVA), a drug clinically approved for the treatment of heart failure, improves Ca handling in dystrophic ventricular cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Intracellular Ca measurements revealed that 4-months administration of IVA to DMDmdx rats significantly improves Ca handling properties in dystrophic ventricular cardiomyocytes. In particular, IVA treatment increased electrically-evoked Ca transients and speeded their decay. This suggested enhanced sarcoplasmic reticulum Ca release and faster removal of Ca from the cytosol. Chronic IVA administration also enhanced the sarcoplasmic reticulum Ca load. Transthoracic echocardiography revealed a significant improvement of cardiac systolic function in IVA-treated DMDmdx rats. Thus, left ventricular ejection fraction and fractional shortening were enhanced, and end-systolic as well as end-diastolic diameters were diminished by the drug. Finally, chronic IVA administration neither significantly attenuated cardiac fibrosis and apoptosis, nor was vascular function improved by the drug. Collectively our findings suggest that long-term IVA administration enhances contractile function in the dystrophic heart by improvement of Ca handling in ventricular cardiomyocytes. Chronic IVA administration may be beneficial for DMD patients.
Collapse
Affiliation(s)
- Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Simge Baydar
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Ana I A Goncalves
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, 1090, Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, 1090, Vienna, Austria
| | - Petra Fichtinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Guedes MR, de Noronha SISR, Chírico MTT, da Costa GDC, de Freitas Castro T, de Brito RCF, Vieira LG, Reis TO, Ribeiro MC, Reis AB, Carneiro CM, Bezerra FS, Montano N, da Silva VJD, de Menezes RCA, Chianca-Jr DA, Silva FCDS. Ivabradine restores tonic cardiovascular autonomic control and reduces tachycardia, hypertension and left ventricular inflammation in post-weaning protein malnourished rats. Life Sci 2024; 346:122636. [PMID: 38614307 DOI: 10.1016/j.lfs.2024.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Malnutrition results in autonomic imbalance and heart hypertrophy. Overexpression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in the left ventricles (LV) is linked to hypertrophied hearts and abnormal myocardium automaticity. Given that ivabradine (IVA) has emerging pleiotropic effects, in addition to the widely known bradycardic response, this study evaluated if IVA treatment could repair the autonomic control and cardiac damages in malnourished rats. AIM Assess the impact of IVA on tonic cardiovascular autonomic control and its relationship with hemodynamics regulation, LV inflammation, and HCN gene expression in post-weaning protein malnutrition condition. MAIN METHODS After weaning, male rats were divided into control (CG; 22 % protein) and malnourished (MG; 6 % protein) groups. At 35 days, groups were subdivided into CG-PBS, CG-IVA, MG-PBS and MG-IVA (PBS 1 ml/kg or IVA 1 mg/kg) received during 8 days. We performed jugular vein cannulation and electrode implant for drug delivery and ECG registration to assess tonic cardiovascular autonomic control; femoral cannulation for blood pressure (BP) and heart rate (HR) assessment; and LV collection to evaluate ventricular remodeling and HCN gene expression investigation. KEY FINDINGS Malnutrition induced BP and HR increases, sympathetic system dominance, and LV remodeling without affecting HCN gene expression. IVA reversed the cardiovascular autonomic imbalance; prevented hypertension and tachycardia; and inhibited the LV inflammatory process and fiber thickening caused by malnutrition. SIGNIFICANCE Our findings suggest that ivabradine protects against malnutrition-mediated cardiovascular damage. Moreover, our results propose these effects were not attributed to HCN expression changes, but rather to IVA pleiotropic effects on autonomic control and inflammation.
Collapse
Affiliation(s)
- Mariana Reis Guedes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Sylvana Izaura Salyba Rendeiro de Noronha
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Máira Tereza Talma Chírico
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Gabriela Dias Carvalho da Costa
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thalles de Freitas Castro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Rory Cristiane Fortes de Brito
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Lucas Gabriel Vieira
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thayane Oliveira Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Marcelo Carlos Ribeiro
- Statistics Department, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Alexandre Barbosa Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Cláudia Martins Carneiro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - Valdo José Dias da Silva
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil; Graduate Program in Physiological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Rodrigo Cunha Alvim de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Fernanda Cacilda Dos Santos Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|