1
|
Zou H, Zhang M, Xue P, Wei F, Li F, Fang X, Lou X, Zhou L. Acute arsine poisoning after exposure on cleaning an industrial purifier at a family-run workshop. Front Public Health 2025; 13:1542879. [PMID: 40270748 PMCID: PMC12014608 DOI: 10.3389/fpubh.2025.1542879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
We report a rare incident of acute arsine poisoning when cleaning an industrial purifier to enhance awareness for the prevention of arsine poisoning incidents in the family-run workshop. In this incident, three workers of a family-run cleaning workshop developed symptoms of headache, abdominal pain, chills, fatigue, and hematuria after cleaning an industrial purifier, with a latency period 4-6 h after exposure. Field investigations and laboratory tests were used to investigate the poisoning incident. Red blood cell counts and levels of hemoglobin, alanine transaminase, and urinary arsenic (As) increased, and urinary protein and occult blood tests indicated strongly positive results. The cleaning workshop undertook no effective measures to prevent occupational poisoning. The As concentration in flame retardants, dust on the surface of the industrial purifier, and water in the soaking pool was 269 mg/kg, 1.72 × 105 mg/kg, and 6.89 × 103 mg/L, respectively. This incident highlighted the association of the acute arsine poisoning during the cleaning of an industrial purifier with poor occupational health management practices. Effective measures for the prevention of the acute poisoning should therefore be undertaken.
Collapse
Affiliation(s)
- Hua Zou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Meibian Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Panqi Xue
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Wei
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Li
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xinglin Fang
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaoming Lou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lifang Zhou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
2
|
Abstract
In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient's biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration (p < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient's blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients' biological samples-gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.
Collapse
|
3
|
Nagashima D, Furukawa M, Yamano Y, Yamauchi T, Okubo S, Toho M, Ito Y, Izumo N. Zinc-containing Mohs' paste affects blood flow and angiogenesis suppression. ACTA ACUST UNITED AC 2021; 29:321-328. [PMID: 34417987 DOI: 10.1007/s40199-021-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Mohs' paste, which is composed of zinc chloride and zinc oxide starch, is used for hemostasis of superficial malignancy in the clinical setting. We investigated the concentration of intramuscular zinc in mice after Mohs' paste application and evaluated its relationship with angiogenesis from the perspective of blood flow levels within 24 h. METHODS Male C57BL/6JJmsSlc mice were administered single dose of Mohs' paste at 25%, 50%, and 75% after unilateral hind limb surgery, and glycerin, a viscosity modifier, was administered to the control group (0%). Hind limb blood flow levels were measured with a laser Doppler perfusion imaging system (n = 6). The amounts of intramuscular zinc and vascular endothelial growth factor-A (VEGF-A) expression were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and western blotting, respectively (n = 5 or 3). RESULTS Blood flow levels were significantly decreased in the 50% group after 8 h, and significantly decreased in the 25% and 50% groups after 24 h. Intramuscular zinc was significantly increased in the 50% and 75% groups after 8 h. Western blotting showed that VEGF-A levels were significantly increased in the 25% and 50% groups after 8 h. Based on analytical experiments and biological investigation, we predicated the pharmacological effect of Mohs' paste and found over 50% of it is critical in the blood flow and angiogenesis suppression after more than 8 h of its application. CONCLUSIONS The results suggest that the mechanism of blood flow suppression is independent of VEGF-A levels and might suppress future angiogenesis. Our findings support that of previous studies, in which Mohs' paste was expected to induce hemostasis and suppress angiogenesis. It is an excellent ointment that facilitates hemostasis by suppressing blood flow regardless of angiogenesis, and may be apt for situations where hemostasis is required in the clinical setting.
Collapse
Affiliation(s)
- Daichi Nagashima
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan.,General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Megumi Furukawa
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Yuko Yamano
- Department of Hygiene and Preventive Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takenori Yamauchi
- Department of Hygiene and Preventive Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Shigeko Okubo
- Department of Hygiene and Preventive Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Toho
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Yoshihisa Ito
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan. .,Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan.
| |
Collapse
|
4
|
Bridle TG, Kumarathasan P, Gailer J. Toxic Metal Species and 'Endogenous' Metalloproteins at the Blood-Organ Interface: Analytical and Bioinorganic Aspects. Molecules 2021; 26:molecules26113408. [PMID: 34199902 PMCID: PMC8200099 DOI: 10.3390/molecules26113408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023] Open
Abstract
Globally, human exposure to environmental pollutants causes an estimated 9 million deaths per year and it could also be implicated in the etiology of diseases that do not appear to have a genetic origin. Accordingly, there is a need to gain information about the biomolecular mechanisms that causally link exposure to inorganic environmental pollutants with distinct adverse health effects. Although the analysis of blood plasma and red blood cell (RBC) cytosol can provide important biochemical information about these mechanisms, the inherent complexity of these biological matrices can make this a difficult task. In this perspective, we will examine the use of metalloentities that are present in plasma and RBC cytosol as potential exposure biomarkers to assess human exposure to inorganic pollutants. Our primary objective is to explore the principal bioinorganic processes that contribute to increased or decreased metalloprotein concentrations in plasma and/or RBC cytosol. Furthermore, we will also identify metabolites which can form in the bloodstream and contain essential as well as toxic metals for use as exposure biomarkers. While the latter metal species represent useful biomarkers for short-term exposure, endogenous plasma metalloproteins represent indicators to assess the long-term exposure of an individual to inorganic pollutants. Based on these considerations, the quantification of metalloentities in blood plasma and/or RBC cytosol is identified as a feasible research avenue to better understand the adverse health effects that are associated with chronic exposure of various human populations to inorganic pollutants. Exposure to these pollutants will likely increase as a consequence of technological advances, including the fast-growing applications of metal-based engineering nanomaterials.
Collapse
Affiliation(s)
- Tristen G. Bridle
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
5
|
Schwenk M. Chemical warfare agents. Classes and targets. Toxicol Lett 2017; 293:253-263. [PMID: 29197625 DOI: 10.1016/j.toxlet.2017.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action.
Collapse
Affiliation(s)
- Michael Schwenk
- Formerly: Medical School Hannover. Present address: In den Kreuzäckern 16/1, 72072 Tübingen, Germany.
| |
Collapse
|
6
|
Li SW, Sun X, He Y, Guo Y, Zhao HJ, Hou ZJ, Xing MW. Assessment of arsenic trioxide in the heart of Gallus gallus: alterations of oxidative damage parameters, inflammatory cytokines, and cardiac enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5781-5790. [PMID: 28054265 DOI: 10.1007/s11356-016-8223-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to assess the effects of arsenic trioxide (As2O3) in the chicken heart, and 72 1-day-old male Hy-line chickens were fed either a commercial diet (C group) or an arsenic supplement diet containing 7.5 mg/kg (L group), 15 mg/kg (M group), or 30 mg/kg (H group) As2O3 for 90 days. The results showed that exposure to As2O3 merely lowered (P < 0.05) the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in M and H groups at 90 days, significantly downregulated the inhibition ability of hydroxyl radicals (OH·), and upregulated (P < 0.05) the contents of malondialdehyde (MDA) in As2O3 exposure groups at 30, 60, and 90 days. Meanwhile, the messenger RNA levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and prostaglandin E synthase (PTGEs)) significantly increased (P < 0.05) in As2O3 exposure groups at 30, 60, and 90 days, and histological and ultrastructural damage was observed in As2O3 exposure groups. Additionally, As2O3-induced cardiac enzyme (aspartate transaminase (AST), creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and α-hydroxybutyrate dehydrogenase (α-HBDH)) levels increased (P < 0.05) at 90 days. These findings suggested that As2O3 exposure led to oxidative stress, inflammatory response, and histological and ultrastructural damage and altered the levels of cardiac enzymes in chicken heart tissues. This result may be helpful for further studies on the toxicological mechanisms of As2O3 in the chicken heart.
Collapse
Affiliation(s)
- Si-Wen Li
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China
| | - Ying Guo
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China
| | - Hong-Jing Zhao
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China
| | - Zhi-Jun Hou
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China.
| | - Ming-Wei Xing
- College of Wildlife Resources, Northeast Forestry University, PRC, 26 Hexing Rd, Xiangfang District, Harbin, Heilongjiang Province, 150040, Republic of China.
| |
Collapse
|
7
|
Li C, Srivastava RK, Athar M. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals. Ann N Y Acad Sci 2016; 1378:143-157. [PMID: 27636894 DOI: 10.1111/nyas.13214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/07/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Arsenicals are highly reactive inorganic and organic derivatives of arsenic. These chemicals are very toxic and produce both acute and chronic tissue damage. On the basis of these observations, and considering the low cost and simple methods of their bulk syntheses, these agents were thought to be appropriate for chemical warfare. Among these, the best-known agent that was synthesized and weaponized during World War I (WWI) is Lewisite. Exposure to Lewisite causes painful inflammatory and blistering responses in the skin, lung, and eye. These chemicals also manifest systemic tissue injury following their cutaneous exposure. Although largely discontinued after WWI, stockpiles are still known to exist in the former Soviet Union, Germany, Italy, the United States, and Asia. Thus, access by terrorists or accidental exposure could be highly dangerous for humans and the environment. This review summarizes studies that describe the biological, pathophysiological, toxicological, and environmental effects of exposure to arsenicals, with a major focus on cutaneous injury. Studies related to the development of novel molecular pathobiology-based antidotes against these agents are also described.
Collapse
Affiliation(s)
- Changzhao Li
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ritesh K Srivastava
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|