1
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
2
|
Andersson KE. Promising therapeutic targets for the treatment of urine storage dysfunction: what's the status? Expert Opin Ther Targets 2024; 28:251-258. [PMID: 38629152 DOI: 10.1080/14728222.2024.2344698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Opinions differ on what drugs have both a rationale and a development potential for the treatment of bladder storage dysfunction. AREAS COVERED In the present review, the focus is given to small molecule blockers of TRP channels (TRPV1, TRPV4, TRPA1, and TRPM8), P2 × 3receptor antagonists, drugs against oxidative stress, antifibrosis agents, cyclic nucleotide - dependent pathways, and MaxiK±channel - gene therapy. EXPERT OPINION TRPV1 channel blockers produce hypothermia which seems to be a problem even with the most efficacious second-generation TRPV1 antagonists. This has so far precluded their application to urine storage disorders. Other TRP channel blockers with promising rationale have yet to be tested on the human lower urinary tract. The P2 × 3receptor antagonist, eliapixant, was tested in a randomized controlled clinical trial, was well tolerated but did not meet clinical efficacy endpoints. Antifibrosis agent still await application to the human lower urinary tract. New drug principles for oxidative stress, purine nucleoside phosphorylase inhibition, and NOX inhibition are still at an experimental stage, and so are soluble guanylate cyclase stimulators. Gene therapy with MaxiK±channels is still an interesting approach but no new trials seem to be in pipeline.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Martín-Escura C, Bonache MÁ, Medina JA, Medina-Peris A, De Andrés-López J, González-Rodríguez S, Kerselaers S, Fernández-Ballester G, Voets T, Ferrer-Montiel A, Fernández-Carvajal A, González-Muñiz R. β-Lactam TRPM8 Antagonists Derived from Phe-Phenylalaninol Conjugates: Structure-Activity Relationships and Antiallodynic Activity. Int J Mol Sci 2023; 24:14894. [PMID: 37834342 PMCID: PMC10573892 DOI: 10.3390/ijms241914894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The protein transient receptor potential melastatin type 8 (TRPM8), a non-selective, calcium (Ca2+)-permeable ion channel is implicated in several pathological conditions, including neuropathic pain states. In our previous research endeavors, we have identified β-lactam derivatives with high hydrophobic character that exhibit potent and selective TRPM8 antagonist activity. This work describes the synthesis of novel derivatives featuring C-terminal amides and diversely substituted N'-terminal monobenzyl groups in an attempt to increase the total polar surface area (TPSA) in this family of compounds. The primary goal was to assess the influence of these substituents on the inhibition of menthol-induced cellular Ca2+ entry, thereby establishing critical structure-activity relationships. While the substitution of the tert-butyl ester by isobutyl amide moieties improved the antagonist activity, none of the N'-monobencyl derivatives, regardless of the substituent on the phenyl ring, achieved the activity of the model dibenzyl compound. The antagonist potency of the most effective compounds was subsequently verified using Patch-Clamp electrophysiology experiments. Furthermore, we evaluated the selectivity of one of these compounds against other members of the transient receptor potential (TRP) ion channel family and some receptors connected to peripheral pain pathways. This compound demonstrated specificity for TRPM8 channels. To better comprehend the potential mode of interaction, we conducted docking experiments to uncover plausible binding sites on the functionally active tetrameric protein. While the four main populated poses are located by the pore zone, a similar location to that described for the N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB) antagonist cannot be discarded. Finally, in vivo experiments, involving a couple of selected compounds, revealed significant antinociceptive activity within a mice model of cold allodynia induced by oxaliplatin (OXA).
Collapse
Affiliation(s)
- Cristina Martín-Escura
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain
- Alodia Farmacéutica SL, 28108 Alcobendas, Spain
| | | | | | | | | | - Sara González-Rodríguez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain
- Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | | | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|