1
|
Jin H, Wang H, Wu J, Hu M, Zhou X, Yang S, Zhao A, He K. Asparagine synthetase regulates the proliferation and differentiation of chicken skeletal muscle satellite cells. Anim Biosci 2024; 37:1848-1862. [PMID: 39210809 PMCID: PMC11541025 DOI: 10.5713/ab.24.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Asparagine synthetase (ASNS) is an aminotransferase responsible for the biosynthesis of aspartate by using aspartic acid and glutamine. ASNS is highly expressed in fast-growing broilers, but few studies have reported the regulatory role of ASNS in muscle development. METHODS To explore the function of ASNS in chicken muscle development, the expression of ASNS in different chicken breeds and tissues were first performed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Then, using real-time quantitative RT-PCR, western blot, EdU assay, cell cycle assay and immunofluorescence, the effects of ASNS on the proliferation and differentiation of chicken skeletal muscle satellite cell (SMSC) were investigated. Finally, potential mechanisms by which ASNS influences chicken muscle fiber differentiation were identified through RNA-Seq. RESULTS The mRNA expression pattern of ASNS in muscles mirrors trends in muscle fiber cross-sectional area, average daily weight gain, and muscle weight across different breeds. ASNS knockdown inhibited SMSC proliferation, while overexpression showed the opposite. Moreover, ASNS attenuated SMSC differentiation by activating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway. Additionally, 5-aminoimidazole4-carboxamide1-β-D-ribofuranoside (AICAR) treatment suppressed the cell differentiation induced by siRNA-ASNS. RNA-Seq identified 1,968 differentially expressed genes (DEGs) during chicken SMSC differentiation when overexpression ASNS. Gene ontology (GO) enrichment analysis revealed that these DEGs primarily participated in 8 biological processes, 8 cellular components, and 4 molecular functions. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis identified several significantly enriched signaling pathways, such as the JAK-STAT signaling pathway, tumor necrosis factor signaling pathway, toll-like receptor signaling pathway, and PI3K-Akt signaling pathway. CONCLUSION ASNS promotes proliferation while inhibits the differentiation of chicken SMSCs. This study provides a theoretical basis for studying the role of ASNS in muscle development.
Collapse
Affiliation(s)
- Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, 311300,
China
| |
Collapse
|
2
|
The effects of endurance training and estrogen-related receptor α disruption on mitofusin 1 and 2, GLUT2, PPARβ/δ and SCD1 expression in the liver of diabetic rats. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|