1
|
Fernández H, Grossmann J, Gagliardini V, Feito I, Rivera A, Rodríguez L, Quintanilla LG, Quesada V, Cañal MJ, Grossniklaus U. Sexual and Apogamous Species of Woodferns Show Different Protein and Phytohormone Profiles. FRONTIERS IN PLANT SCIENCE 2021; 12:718932. [PMID: 34868105 PMCID: PMC8633544 DOI: 10.3389/fpls.2021.718932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The gametophyte of ferns reproduces either by sexual or asexual means. In the latter, apogamy represents a peculiar case of apomixis, in which an embryo is formed from somatic cells. A proteomic and physiological approach was applied to the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative D. oreades. The proteomic analysis compared apogamous vs. female gametophytes, whereas the phytohormone study included, in addition to females, three apogamous stages (filamentous, spatulate, and cordate). The proteomic profiles revealed a total of 879 proteins and, after annotation, different regulation was found in 206 proteins of D. affinis and 166 of its sexual counterpart. The proteins upregulated in D. affinis are mostly associated to protein metabolism (including folding, transport, and proteolysis), ribosome biogenesis, gene expression and translation, while in the sexual counterpart, they account largely for starch and sucrose metabolism, generation of energy and photosynthesis. Likewise, ultra-performance liquid chromatography-tandem spectrometry (UHPLC-MS/MS) was used to assess the levels of indol-3-acetic acid (IAA); the cytokinins: 6-benzylaminopurine (BA), trans-Zeatine (Z), trans-Zeatin riboside (ZR), dyhidrozeatine (DHZ), dyhidrozeatin riboside (DHZR), isopentenyl adenine (iP), isopentenyl adenosine (iPR), abscisic acid (ABA), the gibberellins GA3 and GA4, salicylic acid (SA), and the brassinosteroids: brassinolide (BL) and castasterone (CS). IAA, the cytokinins Z, ZR, iPR, the gibberellin GA4, the brassinosteoids castasterone, and ABA accumulated more in the sexual gametophyte than in the apogamous one. When comparing the three apogamous stages, BA and SA peaked in filamentous, GA3 and BL in spatulate and DHRZ in cordate gametophytes. The results point to the existence of large metabolic differences between apogamous and sexual gametophytes, and invite to consider the fern gametophyte as a good experimental system to deepen our understanding of plant reproduction.
Collapse
Affiliation(s)
- Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, Oviedo University, Oviedo, Spain
| | - Jonas Grossmann
- Functional Genomics Center, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich and Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Isabel Feito
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Finca Experimental La Mata, Grado, Spain
| | - Alejandro Rivera
- Area of Plant Physiology, Department of Organisms and Systems Biology, Oviedo University, Oviedo, Spain
| | - Lucía Rodríguez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Finca Experimental La Mata, Grado, Spain
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles, Spain
| | - Víctor Quesada
- Department of Biochemistry and Molecular Biology, Institute of Oncology of the Principality of Asturias, Oviedo University, Móstoles, Spain
| | - Mª Jesús Cañal
- Area of Plant Physiology, Department of Organisms and Systems Biology, Oviedo University, Oviedo, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich and Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|