1
|
Quirke F, Biesty L, Battin M, Bloomfield FH, Daly M, Finucane E, Healy P, Hurley T, Kirkham JJ, Molloy E, Haas DM, Meher S, Ní Bhraonáin E, Walker K, Webbe J, Devane D. Neonatal encephalopathy: a systematic review of reported treatment outcomes. BMJ Paediatr Open 2024; 8:e002510. [PMID: 39322607 PMCID: PMC11425948 DOI: 10.1136/bmjpo-2024-002510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/04/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Neonatal encephalopathy (NE) is a multi-organ condition potentially leading to death or long-term neurodisability. Therapeutic hypothermia is the standard treatment for NE; however, long-term impairments remain common. Studies of new treatments for NE often measure and report different outcomes. Core outcome sets (COSs), a minimum set of outcomes to be measured and reported in all studies for a condition, address this problem. This paper aimed to identify outcomes reported (primary, secondary, adverse events and other reported outcomes) in (1) randomised trials and (2) systematic reviews of randomised trials of interventions for the treatment of NE in the process of developing a COS for interventions for the treatment of NE. METHODS We completed a systematic search for outcomes used to evaluate treatments for NE using MEDLINE, Embase, Cochrane CENTRAL, the Cochrane Database of Systematic Reviews and the WHO International Clinical Trials Registry Platform. Two reviewers screened all included articles independently. Outcomes were extracted verbatim, similar outcomes were grouped and outcome domains were developed. RESULTS 386 outcomes were reported in 116 papers, from 85 studies. Outcomes were categorised into 18 domains. No outcome was reported by all studies, a single study reported 11 outcomes and it was not explicitly stated that outcomes had input from parents. DISCUSSION Heterogeneity in reported outcomes means that synthesis of studies evaluating new treatments for NE remains difficult. A COS, that includes parental/family input, is needed to ensure consistency in measuring and reporting outcomes, and to enable comparison of randomised trials.
Collapse
Affiliation(s)
- Fiona Quirke
- Neonatal Encephalopathy PhD Training Network, Health Research Board, Dublin, Ireland
- Health Research Board -Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
| | - Linda Biesty
- School of Nursing & Midwifery, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| | | | | | - Mandy Daly
- Advocacy and Policymaking Irish Neonatal Health Alliance, Wicklow, Ireland
| | - Elaine Finucane
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| | - Patricia Healy
- School of Nursing & Midwifery, University of Galway, Galway, Ireland
| | - Tim Hurley
- Neonatal Encephalopathy PhD Training Network, Health Research Board, Dublin, Ireland
| | - Jamie J Kirkham
- Centre for Biostatistics, Manchester Academic Health Science Centre, Manchester University, Manchester, UK
| | - Eleanor Molloy
- Paediatrics, Trinity College Dublin, Dublin, Ireland
- Paediatrics, Tallaght Hospital, Dublin, Ireland
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University, Bloomington, Indiana, USA
| | - Shireen Meher
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Karen Walker
- Grace Centre for Newborn Care, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - James Webbe
- Academic Neonatal Medicine, Imperial College London, London, UK
| | - Declan Devane
- Health Research Board -Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Gunn AJ, Davidson JO. Stay cool and keep moving forwards. Pediatr Res 2024:10.1038/s41390-024-03546-0. [PMID: 39242940 DOI: 10.1038/s41390-024-03546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Glycemia and Neonatal Encephalopathy: Outcomes in the LyTONEPAL (Long-Term Outcome of Neonatal Hypoxic EncePhALopathy in the Era of Neuroprotective Treatment With Hypothermia) Cohort. J Pediatr 2023:S0022-3476(23)00109-9. [PMID: 36828343 DOI: 10.1016/j.jpeds.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 02/12/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVES To assess in newborns with neonatal encephalopathy (NE), presumptively related to a peripartum hypoxic-ischemic event, the frequency of dysglycemia and its association with neonatal adverse outcomes. STUDY DESIGN We conducted a secondary analysis of LyTONEPAL (Long-Term Outcome of Neonatal hypoxic EncePhALopathy in the era of neuroprotective treatment with hypothermia), a population-based cohort study including 545 patients with moderate-to-severe NE. Newborns were categorized by the glycemia values assessed by routine clinical care during the first 3 days of life: normoglycemic (all glycemia measurements ranged from 2.2 to 8.3 mmol/L), hyperglycemic (at least 1 measurement >8.3 mmol/L), hypoglycemic (at least 1 measurement <2.2 mmol/L), or with glycemic lability (measurements included at least 1 episode of hypoglycemia and 1 episode of hyperglycemia). The primary adverse outcome was a composite outcome defined by death and/or brain lesions on magnetic resonance imaging, regardless of severity or location. RESULTS In total, 199 newborns were categorized as normoglycemic (36.5%), 74 hypoglycemic (13.6%), 213 hyperglycemic (39.1%), and 59 (10.8%) with glycemic lability, based on the 2593 glycemia measurements collected. The primary adverse outcome was observed in 77 (45.8%) normoglycemic newborns, 37 (59.7%) with hypoglycemia, 137 (67.5%) with hyperglycemia, and 40 (70.2%) with glycemic lability (P < .01). With the normoglycemic group as the reference, the aORs and 95% 95% CIs for the adverse outcome were significantly greater for the group with hyperglycemia (aOR 1.81; 95% CI 1.06-3.11). CONCLUSIONS Dysglycemia affects nearly two-thirds of newborns with NE and is independently associated with a greater risk of mortality and/or brain lesions on magnetic resonance imaging. TRIAL REGISTRATION NCT02676063.
Collapse
|
4
|
Hong JM, Choi ES, Park SY. Selective Brain Cooling: A New Horizon of Neuroprotection. Front Neurol 2022; 13:873165. [PMID: 35795804 PMCID: PMC9251464 DOI: 10.3389/fneur.2022.873165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (TH), which prevents irreversible neuronal necrosis and ischemic brain damage, has been proven effective for preventing ischemia-reperfusion injury in post-cardiac arrest syndrome and neonatal encephalopathy in both animal studies and clinical trials. However, lowering the whole-body temperature below 34°C can lead to severe systemic complications such as cardiac, hematologic, immunologic, and metabolic side effects. Although the brain accounts for only 2% of the total body weight, it consumes 20% of the body's total energy at rest and requires a continuous supply of glucose and oxygen to maintain function and structural integrity. As such, theoretically, temperature-controlled selective brain cooling (SBC) may be more beneficial for brain ischemia than systemic pan-ischemia. Various SBC methods have been introduced to selectively cool the brain while minimizing systemic TH-related complications. However, technical setbacks of conventional SBCs, such as insufficient cooling power and relatively expensive coolant and/or irritating effects on skin or mucosal interfaces, limit its application to various clinical settings. This review aimed to integrate current literature on SBC modalities with promising therapeutic potential. Further, future directions were discussed by exploring studies on interesting coping skills in response to environmental or stress-induced hyperthermia among wild animals, including mammals and birds.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- *Correspondence: Ji Man Hong
| | - Eun Sil Choi
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
5
|
Parmentier CEJ, de Vries LS, van der Aa NE, Eijsermans MJC, Harteman JC, Lequin MH, Swanenburg de Veye HFN, Koopman-Esseboom C, Groenendaal F. Hypoglycemia in Infants with Hypoxic-Ischemic Encephalopathy Is Associated with Additional Brain Injury and Worse Neurodevelopmental Outcome. J Pediatr 2022; 245:30-38.e1. [PMID: 35120986 DOI: 10.1016/j.jpeds.2022.01.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine the incidence of hypoglycemia among infants with hypoxic-ischemic encephalopathy (HIE) who received therapeutic hypothermia, and to assess whether infants with hypoglycemia had more brain injury on magnetic resonance imaging (MRI) or differences in neurodevelopmental outcome. STUDY DESIGN Single-center, retrospective cohort study including infants cooled for HIE. Hypoglycemia (blood glucose <36.0 mg/dL <2 hours and <46.8 mg/dL ≥2 hours after birth) was analyzed in the period before brain MRI. Brain injury was graded using a validated score. Motor and neurocognitive outcomes were assessed at 2 years for all survivors, and 5.5 years for a subset who had reached this age. RESULTS Of 223 infants analyzed, 79 (35.4%) had hypoglycemia. MRI was performed in 187 infants. Infants with hypoglycemia (n = 65) had higher brain injury scores (P = .018). After adjustment for HIE severity, hypoglycemia remained associated with higher injury scores (3.6 points higher; 95% CI, 0.8-6.4). Hyperglycemia did not affect MRI scores. In survivors at 2 years (n = 154) and 5.5 years (n = 102), a univariable analysis showed lower 2-year motor scores and lower motor and cognitive scores at preschool age in infants with hypoglycemia. After adjustment for HIE severity, infants with hypoglycemia had 9 points lower IQs (P = .023) and higher odds of adverse outcomes at preschool age (3.6; 95% CI, 1.4-9.0). CONCLUSIONS More than one-third of infants cooled for HIE had hypoglycemia. These infants had a higher degree of brain injury on MRI and lower cognitive function at preschool age. Strategies to avoid hypoglycemia should be optimized in this setting.
Collapse
Affiliation(s)
- Corline E J Parmentier
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maria J C Eijsermans
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Johanneke C Harteman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maarten H Lequin
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Henriette F N Swanenburg de Veye
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Corine Koopman-Esseboom
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Mathew JL, Kaur N, Dsouza JM. Therapeutic hypothermia in neonatal hypoxic encephalopathy: A systematic review and meta-analysis. J Glob Health 2022; 12:04030. [PMID: 35444799 PMCID: PMC8994481 DOI: 10.7189/jogh.12.04030] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Therapeutic hypothermia (TH) is regarded as the most efficacious therapy for neonatal hypoxic encephalopathy. However, limitations in previous systematic reviews and the publication of new data necessitate updating the evidence. We conducted this up-to-date systematic review to evaluate the effects of TH in neonatal encephalopathy on clinical outcomes. Methods In this systematic review and meta-analysis, we searched Medline, Cochrane Library, Embase, LIVIVO, Web of Science, Scopus, CINAHL, major trial registries, and grey literature (from inception to October 31, 2021), for randomized controlled trials (RCT) comparing TH vs normothermia in neonatal encephalopathy. We included RCTs enrolling neonates (gestation ≥35 weeks) with perinatal asphyxia and encephalopathy, who received either TH (temperature ≤34°C) initiated within 6 hours of birth for ≥48 hours, vs no cooling. We excluded non-RCTs, those with delayed cooling, or cooling to >34°C. Two authors independently appraised risk-of-bias and extracted data on mortality and neurologic disability at four time points: neonatal (from randomization to discharge/death), infancy (18-24 months), childhood (5-10 years), and long-term (>10 years). Other outcomes included seizures, EEG abnormalities, and MRI findings. Summary data from published RCTs were pooled through fixed-effect meta-analysis. Results We identified 36 863 citations and included 39 publications representing 29 RCTs with 2926 participants. Thirteen studies each had low, moderate, and high risk-of-bias. The pooled risk ratios (95% confidence interval, CI) were as follows: neonatal mortality: 0.87 (95% CI = 0.75, 1.00), n = 2434, I2 = 38%; mortality at 18-24 months: 0.88 (95% CI = 0.78, 1.01), n = 2042, I2 = 51%; mortality at 5-10 years: 0.81 (95% CI = 0.62, 1.04), n = 515, I2 = 59%; disability at 18-24 months: 0.62 (95% CI = 0.52, 0.75), n = 1440, I2 = 26%; disability at 5-10 years: 0.68 (95% CI = 0.52, 0.90), n = 442, I2 = 3%; mortality or disability at 18-24 months: 0.78 (95% CI = 0.72, 0.86), n = 1914, I2 = 54%; cerebral palsy at 18-24 months: 0.63 (95% CI = 0.50, 0.78), n = 1136, I2 = 39%; and childhood cerebral palsy: 0.63 (95% CI = 0.46, 0.85), n = 449, I2 = 0%. Some outcomes showed significant differences by study-setting; the risk ratio (95% CI) for mortality at 18-24 months was 0.79 (95% CI = 0.66,0.93), n = 1212, I2 = 7% in high-income countries, 0.67 (95% CI = 0.41, 1.09), n = 276, I2 = 0% in upper-middle-income countries, and 1.18 (95% CI = 0.94, 1.47), n = 554, I2 = 75% in lower-middle-income countries. The corresponding pooled risk ratios for ‘mortality or disability at 18-24 months’ were 0.77 (95% CI = 0.69, 0.86), n = 1089, I2 = 0%; 0.56 (95% CI = 0.41, 0.78), n = 276, I2 = 30%; and 0.92 (95% CI = 0.77, 1.09), n = 549, I2 = 86% respectively. Trials with low risk of bias showed risk ratio of 0.97 (95% CI = 0.80, 1.16, n = 1475, I2 = 62%) for neonatal mortality, whereas trials with higher risk of bias showed 0.71 (95% CI = 0.55, 0.91), n = 959, I2 = 0%. Likewise, risk ratio for mortality at 18-24 months was 0.96 (95% CI = 0.83, 1.13), n = 1336, I2 = 58% among low risk-of-bias trials, but 0.72 (95% CI = 0.56, 0.92), n = 706, I2 = 0%, among higher risk of bias trials. Conclusions Therapeutic hypothermia for neonatal encephalopathy reduces neurologic disability and cerebral palsy, but its effect on neonatal, infantile and childhood mortality is uncertain. The setting where it is implemented affects the outcomes. Low(er) quality trials overestimated the potential benefit of TH.
Collapse
Affiliation(s)
- Joseph L Mathew
- Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Navneet Kaur
- Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | | |
Collapse
|
7
|
Allegaert K, Salaets T, Ward RM, Annaert P, Smits A. QTc Intervals Are Prolonged in Late Preterm and Term Neonates during Therapeutic Hypothermia but Normalize Afterwards. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1153. [PMID: 34943349 PMCID: PMC8700422 DOI: 10.3390/children8121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND There are anecdotal reports on reversible QTc prolongation during therapeutic hypothermia (TH) for moderate to severe neonatal encephalopathy after asphyxia. As the QTc interval is a relevant biomarker for pharmacovigilance during medication development, a structured search and review on published neonatal QTc values to generate reference values is warranted to facilate medication development in this specific population. METHODS A structured search and literature assessment (PubMed, Embase, and Google Scholar) with 'Newborn/Infant, QT and hypothermia' was conducted (October 2021). Retrieved individual values were converted to QTc (Bazett) over postnatal age (day 1-7). RESULTS We retrieved 94 QTc intervals (during TH (n = 50, until day 3) or subsequent normothermia (n = 44, day 4-7)) in 33 neonates from 6 publications. The median (range) of QTc intervals during TH was 508 (430-678), and 410 (317-540) ms afterwards (difference 98 ms, or +28 ms/°C decrease). Four additional cohorts (without individual QTc intervals) confirmed the pattern and magnitude of the effect of body temperature on the QTc interval. CONCLUSIONS We highlighted a relevant non-maturational covariate (°C dependent TH) and generated reference values for the QTc interval in this specific neonatal subpopulation. This knowledge on QTc during TH should be considered and integrated in neonatal medication development.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Department of Clinical Pharmacy, Erasmus MC, Postbus 2040, 3000 GA Rotterdam, The Netherlands
| | - Thomas Salaets
- Division of Pediatric Cardiology, Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Robert M. Ward
- Division of Neonatology and Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT 84132, USA;
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
9
|
Borloo N, Smits A, Thewissen L, Annaert P, Allegaert K. Creatinine Trends and Patterns in Neonates Undergoing Whole Body Hypothermia: A Systematic Review. CHILDREN-BASEL 2021; 8:children8060475. [PMID: 34200017 PMCID: PMC8228260 DOI: 10.3390/children8060475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
Many neonates undergoing whole body hypothermia (WBH) following moderate to severe perinatal asphyxia may also suffer from renal impairment. While recent data suggest WBH-related reno-protection, differences in serum creatinine (Scr) patterns to reference patterns were not yet reported. We therefore aimed to document Scr trends and patterns in asphyxiated neonates undergoing WBH and compared these to centiles from a reference Scr data set of non-asphyxiated (near)term neonates. Using a systematic review strategy, reports on Scr trends (mean ± SD, median or interquartile range) were collected (day 1-7) in WBH cohorts and compared to centiles of an earlier reported reference cohort of non-asphyxia cases. Based on 13 papers on asphyxia + WBH cases, a pattern of postnatal Scr trends in asphyxia + WBH cases was constructed. Compared to the reference 50th centile Scr values, mean or median Scr values at birth and up to 48 h were higher in asphyxia + WBH cases with a subsequent uncertain declining trend towards, at best, high or high-normal creatinine values afterwards. Such patterns are valuable for anticipating average changes in renal drug clearance but do not yet cover the relevant inter-patient variability observed in WBH cases, as this needs pooling of individual Screa profiles, preferably beyond the first week of life.
Collapse
Affiliation(s)
- Noor Borloo
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (N.B.); (A.S.)
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (N.B.); (A.S.)
- Neonatal Intensive Care Unit, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Liesbeth Thewissen
- Neonatal Intensive Care Unit, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (N.B.); (A.S.)
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Department of Clinical Pharmacy, Erasmus MC, Postbus 2040, 3000 GA Rotterdam, The Netherlands
- Correspondence: ; Tel.: +32-(16)-342020
| |
Collapse
|
10
|
Abate BB, Bimerew M, Gebremichael B, Mengesha Kassie A, Kassaw M, Gebremeskel T, Bayih WA. Effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis of randomized control trials. PLoS One 2021; 16:e0247229. [PMID: 33630892 PMCID: PMC7906350 DOI: 10.1371/journal.pone.0247229] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hypoxic perinatal brain injury is caused by lack of oxygen to baby’s brain and can lead to death or permanent brain damage. However, the effectiveness of therapeutic hypothermia in birth asphyxiated infants with encephalopathy is uncertain. This systematic review and meta-analysis was aimed to estimate the pooled relative risk of mortality among birth asphyxiated neonates with hypoxic-ischemic encephalopathy in a global context. Methods We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines to search randomized control trials from electronic databases (PubMed, Cochrane library, Google Scholar, MEDLINE, Embase, Scopus, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and meta register of Current Controlled Trials (mCRT)). The authors extracted the author’s name, year of publication, country, method of cooling, the severity of encephalopathy, the sample size in the hypothermic, and non-hypothermic groups, and the number of deaths in the intervention and control groups. A weighted inverse variance fixed-effects model was used to estimate the pooled relative risk of mortality. The subgroup analysis was done by economic classification of countries, methods of cooling, and cooling devices. Publication bias was assessed with a funnel plot and Eggers test. A sensitivity analysis was also done. Results A total of 28 randomized control trials with a total sample of 35, 92 (1832 hypothermic 1760 non-hypothermic) patients with hypoxic-ischemic encephalopathy were used for the analysis. The pooled relative risk of mortality after implementation of therapeutic hypothermia was found to be 0.74 (95%CI; 0.67, 0.80; I2 = 0.0%; p<0.996). The subgroup analysis revealed that the pooled relative risk of mortality in low, low middle, upper-middle and high income countries was 0.32 (95%CI; -0.95, 1.60; I2 = 0.0%; p<0.813), 0.5 (95%CI; 0.14, 0.86; I2 = 0.0%; p<0.998), 0.62 (95%CI; 0.41–0.83; I2 = 0.0%; p<0.634) and 0.76 (95%CI; 0.69–0.83; I2 = 0.0%; p<0.975) respectively. The relative risk of mortality was the same in selective head cooling and whole-body cooling method which was 0.74. Regarding the cooling device, the pooled relative risk of mortality is the same between the cooling cap and cooling blanket (0.74). However, it is slightly lower (0.73) in a cold gel pack. Conclusions Therapeutic hypothermia reduces the risk of death in neonates with moderate to severe hypoxic-ischemic encephalopathy. Both selective head cooling and whole-body cooling method are effective in reducing the mortality of infants with this condition. Moreover, low income countries benefit the most from the therapy. Therefore, health professionals should consider offering therapeutic hypothermia as part of routine clinical care to newborns with hypoxic-ischemic encephalopathy especially in low-income countries.
Collapse
Affiliation(s)
- Biruk Beletew Abate
- Department of Nursing, College of Health Sciences, Woldia University, Woldia, Ethiopia
- * E-mail:
| | - Melaku Bimerew
- Department of Nursing, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | | | | | - MesfinWudu Kassaw
- Department of Nursing, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Teshome Gebremeskel
- Department of Nursing, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | | |
Collapse
|
11
|
Bhagat I, Sarkar S. Multiple Organ Dysfunction During Therapeutic Cooling of Asphyxiated Infants. Neoreviews 2019; 20:e653-e660. [PMID: 31676739 DOI: 10.1542/neo.20-11-e653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main purpose of therapeutic cooling is neuroprotection of asphyxiated infants with significant hypoxic-ischemic encephalopathy. However, to improve the overall outcome, it is necessary to properly manage the full range of multiple organ system complications found in asphyxiated infants undergoing therapeutic cooling. Every physiologic process in an asphyxiated infant can potentially be affected by the cooling treatment. The purpose of this review is to discuss the effect of cooling on neonatal physiology in the current recommended cooling range and the management thereof.
Collapse
Affiliation(s)
- Indira Bhagat
- Division of Neonatal-Perinatal Medicine, Wayne State University, Children's Hospital of Michigan, Detroit, MI
| | - Subrata Sarkar
- Division of Neonatal-Perinatal Medicine, University of Michigan Health System, Ann Arbor, MI
| |
Collapse
|
12
|
Repurposing azithromycin for neonatal neuroprotection. Pediatr Res 2019; 86:444-451. [PMID: 31100754 PMCID: PMC6764891 DOI: 10.1038/s41390-019-0408-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation contributes to neonatal hypoxic-ischemic brain injury pathogenesis. We evaluated the neuroprotective efficacy of azithromycin, a safe, widely available antibiotic with anti-inflammatory properties, in a neonatal rodent hypoxic-ischemic brain injury model. METHODS Seven-day-old rats underwent right carotid artery ligation followed by 90-min 8% oxygen exposure; this procedure elicits quantifiable left forepaw functional impairment and right cerebral hemisphere damage. Sensorimotor function (vibrissae-stimulated forepaw placing, grip strength) and brain damage were compared in azithromycin- and saline-treated littermates 2-4 weeks later. Multiple treatment protocols were evaluated (variables included doses ranging from 15 to 45 mg/kg; treatment onset 15 min to 4 h post-hypoxia, and comparison of 1 vs. 3 injections). RESULTS All azithromycin doses improved function and reduced brain damage; efficacy was dose dependent, and declined with increasing treatment delay. Three azithromycin injections, administered over 48 h, improved performance on both function measures and reduced brain damage more than a single dose. CONCLUSION In this neonatal rodent model, azithromycin improved functional and neuropathology outcomes. If supported by confirmatory studies in complementary neonatal brain injury models, azithromycin could be an attractive candidate drug for repurposing and evaluation for neonatal neuroprotection in clinical trials.
Collapse
|
13
|
Herrera AS, A Esparza MDC, Arias PES, Ashraf GM, Mosa OF, Fisenko VP, Sologova SS, Dostdar SA, Sokolov AV, Bovina EV, Chubarev VN, Tarasov VV, Somasundaram SG, Kirkland CE, Aliev G. The Role of Melanin to Dissociate Oxygen from Water to Treat Retinopathy of Prematurity. Cent Nerv Syst Agents Med Chem 2019; 19:215-222. [PMID: 31267880 DOI: 10.2174/1871524919666190702164206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Retinopathy of Prematurity (ROP) is a potentially blinding disorder that commonly afflicts premature infants who are born prior to 31weeks of gestation or with a body weight less than 1250 grams (about 2.75 pounds). Another risk factor is excessive oxygen in incubators, which can lead to blindness. A compounding factor is that survival rates for premature infants are rising with concomitantly more cases of ROP. We have reported an unsuspected intrinsic property of melanin to dissociate water. This capability can be considered an alternative treatment option for adult and neonatal diseases. It is known that exogenous surfactant administration suppresses bronchopulmonary dysplasia and consequent death, randomized, controlled trials with various respiratory interventions did not show any significant reductions in morbidity and mortality rates. During a descriptive study about the three leading causes of blindness in the world, the ability of melanin to transform light energy into chemical energy through the dissociation of water molecule was unraveled. Initially, during 2 or 3 years; we tried to link together our findings with the widely accepted metabolic pathways already described in molecular pathway databases, which have been developed to collect and organize the current knowledge on metabolism scattered across a multitude of scientific evidence. OBSERVATIONS The current report demonstrates the main problems that afflict premature babies with an emphasis on the growth of abnormal vessels in the retina, the explanation for which is unknown until date. We also reported a case of a baby who suffered digestive and respiratory problems with a brain haemorrhage that was successfully treated by laser photocoagulation. We hypothesise that most likely this effect was due to the melanin level and melanin itself produces oxygen via dissociating with water molecules. CONCLUSION We postulate that the intrinsic effect of melanin may easily convert visible and invisible light into chemical energy via a water dissociation reaction similar to the one in plant's chlorophyll, and markedly elevated with diagnosis and treatment of the complications related to premature babies.
Collapse
Affiliation(s)
- Arturo S Herrera
- Human Photosynthesis® Study Center. Sierra del Laurel 212, Bosques del Prado Norte, Aguascalientes, CP 20000, Mexico
| | - María Del Carmen A Esparza
- Human Photosynthesis® Study Center. Sierra del Laurel 212, Bosques del Prado Norte, Aguascalientes, CP 20000, Mexico
| | - Paola E S Arias
- Human Photosynthesis® Study Center. Sierra del Laurel 212, Bosques del Prado Norte, Aguascalientes, CP 20000, Mexico
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama F Mosa
- Health Sciences College at Leith, UQU, Saudi Arabia
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation
| | - Susanna S Sologova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation
| | - Samira A Dostdar
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation
| | - Alexander V Sokolov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation
| | - Elena V Bovina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Vladimir N Chubarev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation
| | - Vadim V Tarasov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, bld. 2, Moscow, 119991, Russian Federation.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, United States
| |
Collapse
|
14
|
Bingham A, Laptook AR. Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Benedetti GM, Silverstein FS. Targeted Temperature Management in Pediatric Neurocritical Care. Pediatr Neurol 2018; 88:12-24. [PMID: 30309737 DOI: 10.1016/j.pediatrneurol.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022]
Abstract
Targeted temperature management encompasses a range of clinical interventions to regulate systemic temperature, and includes both induction of varying degrees of hypothermia and fever prevention ("targeted normothermia"). Targeted temperature management plays a key role in the contemporary management of critically ill neonates and children with acute brain injury. Yet, many unanswered questions remain regarding optimal temperature management in pediatric neurocritical care. The introduction highlights experimental studies that have evaluated the neuroprotective efficacy of therapeutic hypothermia and explored possible mechanisms of action in several brain injury models. The next section focuses on three major clinical conditions in which therapeutic hypothermia has been evaluated in randomized controlled trials in pediatric populations: neonatal hypoxic-ischemic encephalopathy, postcardiac arrest encephalopathy, and traumatic brain injury. Clinical implications of targeted temperature management in pediatric neurocritical care are also discussed. The final section examines some of the factors that may underlie the limited neuroprotective efficacy of hypothermia that has been observed in several major pediatric clinical trials, and outlines important directions for future research.
Collapse
Affiliation(s)
- Giulia M Benedetti
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois.
| | - Faye S Silverstein
- Departments of Pediatrics and Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Hukui J, Jones S, Coughlin K, Levin S, Foster JR. Non-pathological bilious vomiting complicating therapeutic hypothermia for hypoxic ischaemic encephalopathy in neonates: a retrospective cohort study. BMJ Paediatr Open 2017; 1:e000034. [PMID: 29637099 PMCID: PMC5843005 DOI: 10.1136/bmjpo-2017-000034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Therapeutic hypothermia (TH) for moderate-to-severe neonatal hypoxic ischaemic encephalopathy (HIE) is generally described as safe. We performed this study to determine the incidence of bilious vomiting or bilious drainage (BVD) attributable to TH in this population. DESIGN A single-centre, retrospective cohort study. SETTING Neonatal and paediatric intensive care units (NICU and PICU) of a single tertiary care centre. PATIENTS All newborns with HIE who met criteria for TH between 2009 and 2014. INTERVENTIONS Cases were matched 1:1 for unit of care (NICU vs PICU), gestational age, gender, and Sarnat score with historic controls who did not receive TH. Groups were compared with Pearson's Χ2 analysis. Relative risk was calculated, and ORs were used to allow regression analysis. RESULTS Forty-seven patients met all inclusion criteria. The incidence of BVD in patients who received TH was 26%. The group exposed to TH was more likely to experience BVD compared with the control group with a relative risk of 6.0(95% CI 1.4 to 25.4), even after accounting for improper or unchecked nasogastric position, opioids and muscle relaxant use, OR=7.8(95% CI 1.4 to 43.3), and when positive blood culture was included in the regression model, OR=11.6(95% CI 1.2 to 115.0). Three patients underwent investigation and no patients had surgical pathology. CONCLUSION TH appears to be associated with non-pathological bilious vomiting or gastric drainage. Further prospective data are needed to identify the patients in whom investigation and intervention may be avoided.
Collapse
Affiliation(s)
- Julie Hukui
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Sarah Jones
- Department of Paediatrics, Western University, London, Ontario, Canada
- Department of Paediatric Surgery, Western University, London, Ontario, Canada
| | - Kevin Coughlin
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Simon Levin
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Jennifer Ruth Foster
- Department of Paediatrics, Western University, London, Ontario, Canada
- Department of Critical Care, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Therapeutic hypothermia translates from ancient history in to practice. Pediatr Res 2017; 81:202-209. [PMID: 27673420 PMCID: PMC5233584 DOI: 10.1038/pr.2016.198] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Abstract
Acute postasphyxial encephalopathy around the time of birth remains a major cause of death and disability. The possibility that hypothermia may be able to prevent or lessen asphyxial brain injury is a "dream revisited". In this review, a historical perspective is provided from the first reported use of therapeutic hypothermia for brain injuries in antiquity, to the present day. The first uncontrolled trials of cooling for resuscitation were reported more than 50 y ago. The seminal insight that led to the modern revival of studies of neuroprotection was that after profound asphyxia, many brain cells show initial recovery from the insult during a short "latent" phase, typically lasting ~6 h, only to die hours to days later during a "secondary" deterioration phase characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this conceptual framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration, and continued for a sufficient duration to allow the secondary deterioration to resolve, is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild induced hypothermia significantly improves intact survival and neurodevelopmental outcomes to midchildhood.
Collapse
|
18
|
Gunn JK, Hunt RW. Amplitude-Integrated Electroencephalography Following Infant Cardiac Surgery: a Window to the Brain or a Crystal Ball? J Pediatr 2016; 178:10-12. [PMID: 27539396 DOI: 10.1016/j.jpeds.2016.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Julia K Gunn
- Newborn Intensive Care The Royal Children's Hospital Neonatal Research Group Murdoch Children's Research Institute Parkville, Victoria, Australia.
| | - Rodney W Hunt
- Newborn Intensive Care The Royal Children's Hospital Neonatal Research Group Murdoch Children's Research Institute Parkville, Victoria, Australia
| |
Collapse
|
19
|
|
20
|
Maconochie IK, Bingham R, Eich C, López-Herce J, Rodríguez-Núñez A, Rajka T, Van de Voorde P, Zideman DA, Biarent D, Monsieurs KG, Nolan JP. European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015; 95:223-48. [DOI: 10.1016/j.resuscitation.2015.07.028] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Sarkar S, Barks J. Management of neonatal morbidities during hypothermia treatment. Semin Fetal Neonatal Med 2015; 20:97-102. [PMID: 25701292 DOI: 10.1016/j.siny.2015.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the primary goal of therapeutic hypothermia is to improve the neurodevelopmental outcome in asphyxiated infants, optimal management of the full range of multi-organ system complications typically presented by such infants during cooling treatment is necessary for improvement of the overall outcome. For this reason, adequate knowledge of how cooling affects all organ systems of asphyxiated infants with multi-organ hypoxic-ischemic injury is essential. Adequate diagnostic resources, readily available subspecialty consultant services and trained multidisciplinary staff to monitor and manage multi-organ system complications in asphyxiated infants during therapeutic cooling must be ensured during implementation of a cooling program. As therapeutic hypothermia is being used more widely, centers should consider participation in national or international benchmarking of outcomes and short-term adverse events during cooling to facilitate continuous quality improvement efforts.
Collapse
Affiliation(s)
- Subrata Sarkar
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, MI, USA
| | - John Barks
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Abstract
Three ongoing challenges have arisen after the introduction of therapeutic hypothermia (TH) as standard of care for term newborns with moderate or severe perinatal asphyxia: (i) to ensure that the correct group of infants are cooled; (ii) to optimize the delivery of TH and intensive care in relation to the severity of the encephalopathy; (iii) to systematically follow up the long-term efficacy of TH using comparable outcome data between centers and countries. This review addresses the entry criteria for TH, and discusses potential issues regarding patient selection, and management of TH: cooling mild, moderate, and very severe perinatal asphyxia, cooling longer or deeper, and/or starting with a greater delay. This includes cooling of patients outside of standard trial entry criteria, such as after postnatal collapse, premature infants, those with infection, and infants with metabolic, chromosomal or surgical diagnoses in addition to perinatal asphyxia.
Collapse
Affiliation(s)
- Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Gonzales-Portillo GS, Reyes S, Aguirre D, Pabon MM, Borlongan CV. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol 2014; 5:147. [PMID: 25161645 PMCID: PMC4130306 DOI: 10.3389/fneur.2014.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022] Open
Abstract
Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke and providing insights on the potential of cell therapy currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in stem cell therapeutics as an emerging paradigm for stroke or STEPS, which have been recently modified to Baby STEPS to cater for the “neonatal” symptoms of HIE. These guidelines recognized that neonatal HIE exhibit distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.
Collapse
Affiliation(s)
| | - Stephanny Reyes
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Daniela Aguirre
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| |
Collapse
|
24
|
Advancing critical care medicine with stem cell therapy and hypothermia for cerebral palsy. Neuroreport 2014; 24:1067-71. [PMID: 24169604 DOI: 10.1097/wnr.0000000000000062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With limited clinical trials on stem cell therapy for adult stroke underway, the assessment of efficacy also needs to be considered for neonatal hypoxic-ischemic brain injury, considering its distinct symptoms. The critical nature of this condition leads to establishment of deficits that last a lifetime. Here, we will highlight the progress of current translational research, commenting on the critical nature of the disease, stem cell sources, the use of hypothermia, safety and efficacy of each treatment, modes of action, and the possibility of combination therapy. With this in mind, we reference translational guidelines established by a consortium of research partners called Stem cell Therapeutics as an Emerging Paradigm for Stroke (STEPS). The guidelines of STEPS are directed toward evaluating outcomes of cell therapy in adult stroke; however, we identify the overlapping pathology, as we believe that these guidelines will serve well in the investigation of neonatal hypoxic-ischemic therapy. Finally, we discuss emerging treatments and a case report, altogether suggesting that the potential for these treatments to be used in synergy has arrived and the time for advancing stem cell use in combination with hypothermia for cerebral palsy is now.
Collapse
|
25
|
Galvao TF, Silva MT, Marques MC, de Oliveira ND, Pereira MG. Hypothermia for perinatal brain hypoxia-ischemia in different resource settings: a systematic review. J Trop Pediatr 2013; 59:453-9. [PMID: 23780995 DOI: 10.1093/tropej/fmt047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To assess the effect of hypothermia on mortality of neonates with hypoxic-ischemic encephalopathy in different economic resources settings. METHODS We searched for randomized controlled trials on MEDLINE, Embase and other databases. Duplicate reviewers selected the studies and extracted data. We calculated meta-analyses of the relative risks (RR) and 95% confidence intervals (95% CI), and used meta-regression to evaluate the gross domestic product per capita influence on hypothermia efficacy. RESULTS Sixteen studies were included (n = 1889); eight were conducted in lower income countries (n = 662). Hypothermia significantly reduced mortality (RR = 0.77; 95% CI: 0.65-0.92). Meta-regression revealed that hypothermia efficacy does not increase as the gross domestic product per capita rises. CONCLUSIONS There is enough evidence to support hypothermia as the standard care for hypoxic-ischemic encephalopathy. Evidence from low-resource settings is limited, but hypothermia efficacy was not shown to be associated with better resources countries.
Collapse
Affiliation(s)
- Tais F Galvao
- University of Brasilia, Faculty of Medicine, Brasilia, Distrito Federal, 70910-900, Brazil
| | | | | | | | | |
Collapse
|
26
|
Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res 2013; 74 Suppl 1:50-72. [PMID: 24366463 PMCID: PMC3873711 DOI: 10.1038/pr.2013.206] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intrapartum hypoxic events ("birth asphyxia") may result in stillbirth, neonatal or postneonatal mortality, and impairment. Systematic morbidity estimates for the burden of impairment outcomes are currently limited. Neonatal encephalopathy (NE) following an intrapartum hypoxic event is a strong predictor of long-term impairment. METHODS Linear regression modeling was conducted on data identified through systematic reviews to estimate NE incidence and time trends for 184 countries. Meta-analyses were undertaken to estimate the risk of NE by sex of the newborn, neonatal case fatality rate, and impairment risk. A compartmental model estimated postneonatal survivors of NE, depending on access to care, and then the proportion of survivors with impairment. Separate modeling for the Global Burden of Disease 2010 (GBD2010) study estimated disability adjusted life years (DALYs), years of life with disability (YLDs), and years of life lost (YLLs) attributed to intrapartum-related events. RESULTS In 2010, 1.15 million babies (uncertainty range: 0.89-1.60 million; 8.5 cases per 1,000 live births) were estimated to have developed NE associated with intrapartum events, with 96% born in low- and middle-income countries, as compared with 1.60 million in 1990 (11.7 cases per 1,000 live births). An estimated 287,000 (181,000-440,000) neonates with NE died in 2010; 233,000 (163,000-342,000) survived with moderate or severe neurodevelopmental impairment; and 181,000 (82,000-319,000) had mild impairment. In GBD2010, intrapartum-related conditions comprised 50.2 million DALYs (2.4% of total) and 6.1 million YLDs. CONCLUSION Intrapartum-related conditions are a large global burden, mostly due to high mortality in low-income countries. Universal coverage of obstetric care and neonatal resuscitation would prevent most of these deaths and disabilities. Rates of impairment are highest in middle-income countries where neonatal intensive care was more recently introduced, but quality may be poor. In settings without neonatal intensive care, the impairment rate is low due to high mortality, which is relevant for the scale-up of basic neonatal resuscitation.
Collapse
|
27
|
El Shimi MS, Awad HA, Hassanein SMA, Gad GI, Imam SS, Shaaban HA, El Maraghy MO. Single dose recombinant erythropoietin versus moderate hypothermia for neonatal hypoxic ischemic encephalopathy in low resource settings. J Matern Fetal Neonatal Med 2013; 27:1295-300. [PMID: 24134405 DOI: 10.3109/14767058.2013.855894] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the safety and efficacy of single dose systemic recombinant human erythropoietin (rEPO) in neonates with perinatal hypoxic Ischemic Encephalopathy (HIE), and its effect on serum brain-derived neurotrophic factor (BDNF) and neuron-specific enolase (NSE). METHODS Forty-five full-term neonates; 30 with perinatal HIE and 15 controls were studied. HIE neonates were randomized into three intervention groups (first 6 h of life): 10 received single subcutaneous 1500 U/kg rEPO at day-1, 10 subjected to hypothermia for 72 h and 10 received supportive care. BDNF and NSE measured during first 6 h and day 5 postnatal. Daily Thompson's score, MRI brain and neuromuscular function scale for survivors at 3 months of age were done. RESULTS Hypothermia group had best survival especially with stage-II Sarnat scale, followed by rEpo and supportive group. BDNF day-5 was significantly higher in each group compared to controls. MRI score and neuromuscular function score were non-significantly lower in the hypothermia group compared to rEPO. CONCLUSIONS Therapeutic hypothermia was superior to single dose rEpo for neuro-protection in HIE especially in patients with stage-II Sarnat scale. Therapeutic effect of combined rEPO multiple dosing and modest hypothermia therapy should be studied.
Collapse
|
28
|
Abstract
Hypoxia-ischemia is a leading cause of morbidity and mortality in the perinatal period with an incidence of 1/4000 live births. Biochemical events such as energy failure, membrane depolarization, brain edema, an increase of neurotransmitter release and inhibition of uptake, an increase of intracellular Ca(2+), production of oxygen-free radicals, lipid peroxidation, and a decrease of blood flow are triggered by hypoxia-ischemia and may lead to brain dysfunction and neuronal death. These abnormalities can result in mental impairments, seizures, and permanent motor deficits, such as cerebral palsy. The physical and emotional strain that is placed on the children affected and their families is enormous. The care that these individuals need is not only confined to childhood, but rather extends throughout their entire life span, so it is very important to understand the pathophysiology that follows a hypoxic-ischemic insult. This review will highlight many of the mechanisms that lead to neuronal death and include the emerging area of white matter injury as well as the role of inflammation and will provide a summary of therapeutic strategies. Hypothermia and oxygen will also be discussed as treatments that currently lack a specific target in the hypoxic/ischemic cascade.
Collapse
Affiliation(s)
- John W Calvert
- Departments of Neurosurgery and Molecular and Cellular Physiology, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | | |
Collapse
|
29
|
Topjian AA, Berg RA, Bierens JJLM, Branche CM, Clark RS, Friberg H, Hoedemaekers CWE, Holzer M, Katz LM, Knape JTA, Kochanek PM, Nadkarni V, van der Hoeven JG, Warner DS. Brain resuscitation in the drowning victim. Neurocrit Care 2013; 17:441-67. [PMID: 22956050 DOI: 10.1007/s12028-012-9747-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drowning is a leading cause of accidental death. Survivors may sustain severe neurologic morbidity. There is negligible research specific to brain injury in drowning making current clinical management non-specific to this disorder. This review represents an evidence-based consensus effort to provide recommendations for management and investigation of the drowning victim. Epidemiology, brain-oriented prehospital and intensive care, therapeutic hypothermia, neuroimaging/monitoring, biomarkers, and neuroresuscitative pharmacology are addressed. When cardiac arrest is present, chest compressions with rescue breathing are recommended due to the asphyxial insult. In the comatose patient with restoration of spontaneous circulation, hypoxemia and hyperoxemia should be avoided, hyperthermia treated, and induced hypothermia (32-34 °C) considered. Arterial hypotension/hypertension should be recognized and treated. Prevent hypoglycemia and treat hyperglycemia. Treat clinical seizures and consider treating non-convulsive status epilepticus. Serial neurologic examinations should be provided. Brain imaging and serial biomarker measurement may aid prognostication. Continuous electroencephalography and N20 somatosensory evoked potential monitoring may be considered. Serial biomarker measurement (e.g., neuron specific enolase) may aid prognostication. There is insufficient evidence to recommend use of any specific brain-oriented neuroresuscitative pharmacologic therapy other than that required to restore and maintain normal physiology. Following initial stabilization, victims should be transferred to centers with expertise in age-specific post-resuscitation neurocritical care. Care should be documented, reviewed, and quality improvement assessment performed. Preclinical research should focus on models of asphyxial cardiac arrest. Clinical research should focus on improved cardiopulmonary resuscitation, re-oxygenation/reperfusion strategies, therapeutic hypothermia, neuroprotection, neurorehabilitation, and consideration of drowning in advances made in treatment of other central nervous system disorders.
Collapse
Affiliation(s)
- Alexis A Topjian
- The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Suite 7C23, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pabon MM, Borlongan CV. ADVANCES IN THE CELL-BASED TREATMENT OF NEONATAL HYPOXIC-ISCHEMIC BRAIN INJURY. FUTURE NEUROLOGY 2013; 8:193-203. [PMID: 23565051 DOI: 10.2217/fnl.12.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell therapy for adult stroke has reached limited clinical trials. Here, we provide translational research guidance on stem cell therapy for neonatal hypoxic-ischemic brain injury requiring a careful consideration of clinically relevant animal models, feasible stem cell sources, and validated safety and efficacy endpoint assays, as well as a general understanding of modes of action of this cellular therapy. To this end, we refer to existing translational guidelines, in particular the recommendations outlined in the consortium of academicians, industry partners and regulators called Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS. Although the STEPS guidelines are directed at enhancing the successful outcome of cell therapy in adult stroke, we highlight overlapping pathologies between adult stroke and neonatal hypoxic-ischemic brain injury. We are, however, cognizant that the neonatal hypoxic-ischemic brain injury displays disease symptoms distinct from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida 33612 USA
| | | |
Collapse
|
31
|
Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013; 2013:CD003311. [PMID: 23440789 PMCID: PMC7003568 DOI: 10.1002/14651858.cd003311.pub3] [Citation(s) in RCA: 845] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Newborn animal studies and pilot studies in humans suggest that mild hypothermia following peripartum hypoxia-ischaemia in newborn infants may reduce neurological sequelae without adverse effects. OBJECTIVES To determine the effect of therapeutic hypothermia in encephalopathic asphyxiated newborn infants on mortality, long-term neurodevelopmental disability and clinically important side effects. SEARCH METHODS We used the standard search strategy of the Cochrane Neonatal Review Group as outlined in The Cochrane Library (Issue 2, 2007). Randomised controlled trials evaluating therapeutic hypothermia in term and late preterm newborns with hypoxic ischaemic encephalopathy were identified by searching the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, 2007, Issue 2), MEDLINE (1966 to June 2007), previous reviews including cross-references, abstracts, conferences, symposia proceedings, expert informants and journal handsearching. We updated this search in May 2012. SELECTION CRITERIA We included randomised controlled trials comparing the use of therapeutic hypothermia with standard care in encephalopathic term or late preterm infants with evidence of peripartum asphyxia and without recognisable major congenital anomalies. The primary outcome measure was death or long-term major neurodevelopmental disability. Other outcomes included adverse effects of cooling and 'early' indicators of neurodevelopmental outcome. DATA COLLECTION AND ANALYSIS Four review authors independently selected, assessed the quality of and extracted data from the included studies. Study authors were contacted for further information. Meta-analyses were performed using risk ratios (RR) and risk differences (RD) for dichotomous data, and weighted mean difference for continuous data with 95% confidence intervals (CI). MAIN RESULTS We included 11 randomised controlled trials in this updated review, comprising 1505 term and late preterm infants with moderate/severe encephalopathy and evidence of intrapartum asphyxia. Therapeutic hypothermia resulted in a statistically significant and clinically important reduction in the combined outcome of mortality or major neurodevelopmental disability to 18 months of age (typical RR 0.75 (95% CI 0.68 to 0.83); typical RD -0.15, 95% CI -0.20 to -0.10); number needed to treat for an additional beneficial outcome (NNTB) 7 (95% CI 5 to 10) (8 studies, 1344 infants). Cooling also resulted in statistically significant reductions in mortality (typical RR 0.75 (95% CI 0.64 to 0.88), typical RD -0.09 (95% CI -0.13 to -0.04); NNTB 11 (95% CI 8 to 25) (11 studies, 1468 infants) and in neurodevelopmental disability in survivors (typical RR 0.77 (95% CI 0.63 to 0.94), typical RD -0.13 (95% CI -0.19 to -0.07); NNTB 8 (95% CI 5 to 14) (8 studies, 917 infants). Some adverse effects of hypothermia included an increase sinus bradycardia and a significant increase in thrombocytopenia. AUTHORS' CONCLUSIONS There is evidence from the 11 randomised controlled trials included in this systematic review (N = 1505 infants) that therapeutic hypothermia is beneficial in term and late preterm newborns with hypoxic ischaemic encephalopathy. Cooling reduces mortality without increasing major disability in survivors. The benefits of cooling on survival and neurodevelopment outweigh the short-term adverse effects. Hypothermia should be instituted in term and late preterm infants with moderate-to-severe hypoxic ischaemic encephalopathy if identified before six hours of age. Further trials to determine the appropriate techniques of cooling, including refinement of patient selection, duration of cooling and method of providing therapeutic hypothermia, will refine our understanding of this intervention.
Collapse
Affiliation(s)
- Susan E Jacobs
- Neonatal Services, Royal Women’s Hospital, Parkville, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Septicemia in a Neonate following Therapeutic Hypothermia: The Literature Review of Evidence. Case Rep Pediatr 2013; 2013:514232. [PMID: 24159400 PMCID: PMC3789282 DOI: 10.1155/2013/514232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022] Open
Abstract
We report a term neonate with hypoxic ischemic encephalopathy who underwent a 72-hour therapeutic hypothermia. He developed unstable body temperature associated with coagulase negative staphylococcus septicemia 2 weeks later which was promptly treated with intravenous antibiotics and made a good recovery. PubMed (a service of the U.S. National Library of Medicine) was searched for the terms “therapeutic hypothermia” and “septicemia,” with limits activated (humans, English, age 0–18 years). There were only 6 randomized controlled trials, 1 non-randomized controlled trial, 1 retrospective cohort, and 1 case-control trial, which showed no definite evidence of increased risk of septicemia or neutrophil dysfunction in infants following hypothermia therapy.
Collapse
|
33
|
Temporal alteration of serum G-CSF and VEGF levels in perinatal asphyxia treated with head cooling. Cytokine 2012; 60:812-4. [DOI: 10.1016/j.cyto.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/17/2022]
|
34
|
Wu L, Yi B, Hu Y, Ji C, Zhang T, Wang Y. The efficacy of hypothermia in hypoxic-ischemic encephalopathy at 18 mo or more. Indian J Pediatr 2012; 79:1342-6. [PMID: 22231774 DOI: 10.1007/s12098-011-0673-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To evaluate the efficacy of hypothermia in the treatment of hypoxic-ischemic encephalopathy (HIE) in neonates at 18 mo of age or more. Also to examine whether the severity of encephalopathy affects the efficacy of hypothermia on mortality and neurodevelopmental disability. METHODS The authors recruited the trials that assessed the efficacy of therapeutic hypothermia in the treatment of HIE in neonates at 18 mo of age or older up to April 2011. The meta- analysis was performed using a fixed effect model. RESULTS Hypothermia significantly reduced the combined rate of death or neurodevelopmental disability (RR = 0.74, 95% CI: 0.67 to 0.82; RD = -0.13, 95% CI: -0.18 to -0.08; NNT = 7, 95% CI: 6 to 9) among infants at 18 mo of age or older. Hypothermia reduced the rate of death (RR = 0.75, 95% CI: 0.64 to 0.88), neurodevelopmental disability (RR = 0.65, 95% CI: 0.54 to 0.79), cerebral palsy (RR = 0.65, 95% CI: 0.53 to 0.80), developmental delay (RR = 0.72, 95% CI: 0.57 to 0.92), neuromotor delay (RR = 0.78, 95% CI: 0.61 to 0.99) and visual deficit (RR = 0.59, 95% CI: 0.36 to 0.99). Analysis of the severity of disease showed that hypothermia reduced the combined rate of death or neurodevelopmental disability not only in moderate encephalopathy infants (RR = 0.63, 95% CI: 0.53 to 0.76) but also in severe encephalopathy infants (RR = 0.82, 95% CI: 0.74 to 0.92). CONCLUSIONS Hypothermia has a beneficial effect in the treatment of HIE in neonates at 18 mo of age or older.
Collapse
Affiliation(s)
- Li Wu
- Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, Hubei 430030, China
| | | | | | | | | | | |
Collapse
|
35
|
Filippi L, Fiorini P, Daniotti M, Catarzi S, Savelli S, Fonda C, Bartalena L, Boldrini A, Giampietri M, Scaramuzzo R, Papoff P, Del Balzo F, Spalice A, la Marca G, Malvagia S, Della Bona ML, Donzelli G, Tinelli F, Cioni G, Pisano T, Falchi M, Guerrini R. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr 2012; 12:144. [PMID: 22950861 PMCID: PMC3478965 DOI: 10.1186/1471-2431-12-144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/31/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2-3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. METHODS/DESIGN Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests. DISCUSSION This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns.
Collapse
Affiliation(s)
- Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Feto-Neonatal Department, A. Meyer University Children's Hospital, Viale Pieraccini, 24, I-50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Laura F, Mori A, Tataranno ML, Muraca MC, Rodriquez DC, Giomi S, Coviello C, Buonocore G. Therapeutic hypothermia in a late preterm infant. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:125-7. [DOI: 10.3109/14767058.2012.663172] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Iwata O, Takenouchi T. Past, present and future of hypothermic neuroprotection for neonatal encephalopathy in Japan: time to say good-by to the old remedies. Brain Dev 2012; 34:163-4. [PMID: 21925816 DOI: 10.1016/j.braindev.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 10/17/2022]
Affiliation(s)
- Osuke Iwata
- Centre for Developmental & Cognitive Neuroscience, Department of Paediatrics, Kurume University School of Medicine, Kurume, Fukuoka, Japan.
| | | |
Collapse
|
38
|
|
39
|
Lista G, Castoldi F, Cavigioli F, Bianchi S, Fontana P, La Verde A. "Ventilatory management of asphyxiated infant during hypothermia". J Matern Fetal Neonatal Med 2011; 24 Suppl 1:67-8. [PMID: 21878058 DOI: 10.3109/14767058.2011.607615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypothermia is used for its neuroprotective effect in perinatal asphyxia. Mechanical ventilation is often used as a supportive therapy for severe asphyxiated infants who can present various degrees of respiratory failure. Animal studies demonstrated a protective effect of cooling on the lungs due to reduced ventilatory requirements. Even if actual knowledge on the effects of hypothermia and rewarming on respiratory parameters during mechanical ventilation is limited, nevertheless human studies seem to demonstrate that hypothermia is safe and does not cause significant changes in the level of respiratory supports.
Collapse
|
40
|
Robertson NJ, Hagmann CF, Acolet D, Allen E, Nyombi N, Elbourne D, Costello A, Jacobs I, Nakakeeto M, Cowan F. Pilot randomized trial of therapeutic hypothermia with serial cranial ultrasound and 18-22 month follow-up for neonatal encephalopathy in a low resource hospital setting in Uganda: study protocol. Trials 2011; 12:138. [PMID: 21639927 PMCID: PMC3127769 DOI: 10.1186/1745-6215-12-138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 06/04/2011] [Indexed: 11/26/2022] Open
Abstract
Background There is now convincing evidence that in industrialized countries therapeutic hypothermia for perinatal asphyxial encephalopathy increases survival with normal neurological function. However, the greatest burden of perinatal asphyxia falls in low and mid-resource settings where it is unclear whether therapeutic hypothermia is safe and effective. Aims Under the UCL Uganda Women's Health Initiative, a pilot randomized controlled trial in infants with perinatal asphyxia was set up in the special care baby unit in Mulago Hospital, a large public hospital with ~20,000 births in Kampala, Uganda to determine: (i) The feasibility of achieving consent, neurological assessment, randomization and whole body cooling to a core temperature 33-34°C using water bottles (ii) The temperature profile of encephalopathic infants with standard care (iii) The pattern, severity and evolution of brain tissue injury as seen on cranial ultrasound and relation with outcome (iv) The feasibility of neurodevelopmental follow-up at 18-22 months of age Methods/Design Ethical approval was obtained from Makerere University and Mulago Hospital. All infants were in-born. Parental consent for entry into the trial was obtained. Thirty-six infants were randomized either to standard care plus cooling (target rectal temperature of 33-34°C for 72 hrs, started within 3 h of birth) or standard care alone. All other aspects of management were the same. Cooling was performed using water bottles filled with tepid tap water (25°C). Rectal, axillary, ambient and surface water bottle temperatures were monitored continuously for the first 80 h. Encephalopathy scoring was performed on days 1-4, a structured, scorable neurological examination and head circumference were performed on days 7 and 17. Cranial ultrasound was performed on days 1, 3 and 7 and scored. Griffiths developmental quotient, head circumference, neurological examination and assessment of gross motor function were obtained at 18-22 months. Discussion We will highlight differences in neonatal care and infrastructure that need to be taken into account when considering a large safety and efficacy RCT of therapeutic hypothermia in low and mid resource settings in the future. Trial registration Current controlled trials ISRCTN92213707
Collapse
Affiliation(s)
- Nicola J Robertson
- Institute for Women's Health, 86-96 Chenies Mews, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Biarent D, Bingham R, Eich C, López-Herce J, Maconochie I, Rodríguez-Núñez A, Rajka T, Zideman D. European Resuscitation Council Guidelines for Resuscitation 2010 Section 6. Paediatric life support. Resuscitation 2011; 81:1364-88. [PMID: 20956047 DOI: 10.1016/j.resuscitation.2010.08.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dominique Biarent
- Paediatric Intensive Care, Hôpital Universitaire des Enfants, 15 av JJ Crocq, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, Koster RW, Wyllie J, Böttiger B. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation 2011; 81:1219-76. [PMID: 20956052 DOI: 10.1016/j.resuscitation.2010.08.021] [Citation(s) in RCA: 860] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jerry P Nolan
- Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rey-Funes M, Ibarra ME, Dorfman VB, Serrano J, Fernández AP, Martínez-Murillo R, Martínez A, Coirini H, Rodrigo J, Loidl CF. Hypothermia prevents nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 2011; 89:729-43. [DOI: 10.1002/jnr.22556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/06/2022]
|
44
|
Abstract
Neonatal asphyxia is associated with multi-organ hypoxia-ischemia and subsequent dysfunction. The cardiovascular system is frequently affected, causing signs of shock and complicating the neonatal circulatory transition. Hypothermia therapy can improve outcome from neonatal asphyxia without adversely affecting cardiovascular stability. Therapy directed at the cardiovascular system can improve short-term measures of systemic blood flow, but to date has not been demonstrated to improve long-term outcome.
Collapse
Affiliation(s)
- Tina A Leone
- Department of Pediatrics, University of California, San Diego, CA 92103, USA.
| | | |
Collapse
|
45
|
Thomas N, George KC, Sridhar S, Kumar M, Kuruvilla KA, Jana AK. Whole body cooling in newborn infants with perinatal asphyxial encephalopathy in a low resource setting: a feasibility trial. Indian Pediatr 2010; 48:445-51. [PMID: 21169643 DOI: 10.1007/s13312-011-0076-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/25/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the feasibility and safety of whole body cooling in newborn infants with perinatal asphyxial encephalopathy in a low resource setting. DESIGN Feasibility trial. SETTING Tertiary care perinatal centre. SUBJECTS Infants born at > 35 weeks gestation with perinatal asphyxia were included in the study. INTERVENTIONS Infants were cooled to a rectal temperature of 33 ± 0.5°C for 72 hours using cloth-covered ice-gel packs. Vital parameters were monitored continuously. OUTCOME MEASURES The primary outcome was the achievement of target temperature within 1 hour of initiation of treatment and maintaining the target temperature for 72 hours. Adverse events and possible complications of hypothermia were the secondary outcomes measured. RESULTS Twenty infants were included in the study. The mean time taken to achieve target rectal temperature was 52 ± 25 minutes. The mean rectal temperature during cooling was 32.9 ± 0.11ºC. The target temperature could be maintained for 72 hours without difficulty in all babies. Adverse events observed during cooling were thrombocytopenia (25%), sinus bradycardia (25%), deranged bleeding parameters (20%), aposteatonecrosis (15%), hyperglycemia (15%), hypoglycemia (10%), hypoxemia (5%), life-threatening coagulopathy (5%) and death (5%). Shivering was noted in many of the babies, especially in the initial phase of cooling. CONCLUSION Whole body cooling in term infants with perinatal asphyxia is achievable, safe and inexpensive in a low-resource setting.
Collapse
Affiliation(s)
- Niranjan Thomas
- Neonatology Unit, Christian Medical College Hospital, Vellore, India.
| | | | | | | | | | | |
Collapse
|
46
|
Biarent D, Bingham R, Eich C, López-Herce J, Maconochie I, Rodrίguez-Núñez A, Rajka T, Zideman D. Lebensrettende Maßnahmen bei Kindern („paediatric life support“). Notf Rett Med 2010. [DOI: 10.1007/s10049-010-1372-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Perlman JM, Davis P, Wyllie J, Kattwinkel J. Therapeutic hypothermia following intrapartum hypoxia-ischemia. An advisory statement from the Neonatal Task Force of the International Liaison Committee on Resuscitation. Resuscitation 2010. [DOI: 10.1016/j.resuscitation.2010.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Abstract
Cooling for neonatal hypoxic-ischemic encephalopathy is a novel and promising neuroprotective therapy that requires significant understanding of how cooling affects all organ systems and interventions used to treat systemic complications of cooling in an intensive care setting. As cooling is used more widely and has been newly introduced in neonatal units, continued surveillance of its use in clinical practice is mandatory. Units offering cooling should strongly consider joining a registry (e.g. the Vermont-Oxford Neonatal Encephalopathy Registry in the USA or the TOBY Register in the UK) that facilitates benchmarking of short-term adverse effects and long-term outcomes of cooling and that supports local quality improvement efforts.
Collapse
Affiliation(s)
- Subrata Sarkar
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Health System, C.S. Mott Children's Hospital, Ann Arbor, Michigan 48109-0254, USA.
| | | |
Collapse
|
49
|
Jacobs SE, Tarnow-Mordi WO. Therapeutic hypothermia for newborn infants with hypoxic-ischaemic encephalopathy. J Paediatr Child Health 2010; 46:568-76. [PMID: 20846275 DOI: 10.1111/j.1440-1754.2010.01880.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripartum asphyxia complicated by moderate or severe hypoxic-ischaemic encephalopathy is a devastating global health issue. A therapeutic 'window of opportunity' exists after resuscitation of the asphyxiated newborn and before the delayed phase of neuronal loss. Animal studies demonstrated that neuronal injury following hypoxia-ischaemia can be prevented or reduced by a mild reduction in brain temperature. Human infant pilot studies confirmed feasibility, without major adverse effects. Randomised trials and systematic reviews comprising term infants with moderate or severe encephalopathy and peripartum asphyxia have established the neuroprotective benefit of therapeutic hypothermia. Hypothermia reduces mortality or major disability to 18 months of age, as well as cerebral palsy, and neuromotor and cognitive delay. Importantly, mortality is reduced without any increase in major neurodevelopmental disability in survivors, and with only minor adverse effects. The evidence supports therapeutic hypothermia when used within strict protocols in tertiary centres to improve the outcome for term and near-term newborns with moderate or severe hypoxic-ischaemic encephalopathy. Equally strict protocols in non-tertiary nurseries will enable earlier initiation of hypothermia under guidance of the regional neonatal intensive care unit and transport team.
Collapse
Affiliation(s)
- Susan E Jacobs
- Newborn Services, Royal Women's Hospital, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | | |
Collapse
|
50
|
Azzopardi D, Edwards AD. Magnetic resonance biomarkers of neuroprotective effects in infants with hypoxic ischemic encephalopathy. Semin Fetal Neonatal Med 2010; 15:261-9. [PMID: 20359970 DOI: 10.1016/j.siny.2010.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evaluation of infants with hypoxic ischemic encephalopathy by magnetic resonance spectroscopy and imaging is useful to direct clinical care, and may assist the evaluation of candidate neuroprotective therapies. Cerebral metabolites measured by magnetic resonance spectroscopy, and visual analysis of magnetic resonance images during the first 30 days after birth accurately predict later neurological outcome and are valid biomarkers of the key physiological processes underlying brain injury in neonatal hypoxic ischemic encephalopathy. Visual assessment of magnetic resonance images may also be a suitable surrogate outcome in studies of neuroprotective therapies but current magnetic resonance methods are relatively inefficient for use in early phase, first in human infant studies of novel neuroprotective therapies. However, diffusion tensor imaging and analysis of fractional anisotropy with tract-based spatial statistics promises to be a highly efficient biomarker and surrogate outcome for rapid preliminary evaluation of promising therapies for neonatal hypoxic ischemic injury. Standardisation of scanning protocols and data analysis between different scanners is essential.
Collapse
Affiliation(s)
- Denis Azzopardi
- Institute of Clinical Sciences, Imperial College London and MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| | | |
Collapse
|