1
|
Andrés CMC, Lobo F, Pérez de la Lastra JM, Munguira EB, Juan CA, Pérez-Lebeña E. Cysteine Alkylation in Enzymes and Transcription Factors: A Therapeutic Strategy for Cancer. Cancers (Basel) 2025; 17:1876. [PMID: 40507356 PMCID: PMC12153576 DOI: 10.3390/cancers17111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/28/2025] [Accepted: 05/31/2025] [Indexed: 06/16/2025] Open
Abstract
Metabolic enzymes and cancer-driving transcriptions factors are often overexpressed in neoplastic cells, and their exposed cysteine residues are amenable to chemical modification. This review explores cysteine alkylation as a cancer treatment strategy, focusing on Michael acceptors like curcumin and helenalin, which interact with transcription factors NF-κB, STAT3 and HIF-1α. Molecular docking studies using AutoDockFR revealed distinct binding affinities: curcumin showed strong interactions with STAT3 and NF-κB, while helenalin exhibited high affinity for STAT3 and HIF-1α. Synthetic compounds like STAT3-IN-1 and CDDO-Me demonstrated superior binding in most targets, except for CDDO-Me with HIF-1α, suggesting unique structural incompatibilities. Natural products such as zerumbone and umbelliferone displayed moderate activity, while palbociclib highlighted synthetic-drug advantages. These results underscore the importance of ligand-receptor structural complementarity, particularly for HIF-1α's confined binding site, where helenalin's terminal Michael acceptor system proved optimal. The findings advocate for integrating computational and experimental approaches to develop cysteine-targeted therapies, balancing synthetic precision with natural product versatility for context-dependent cancer treatment strategies.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Fernando Lobo
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain;
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain;
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
2
|
Brown JI, Persaud R, Iliev P, Karmacharya U, Attarha S, Sahile H, Olsen JE, Hanke D, Idowu T, Frank DA, Frankel A, Williams KC, Page BDG. Investigating the anti-cancer potential of pyrimethamine analogues through a modern chemical biology lens. Eur J Med Chem 2024; 264:115971. [PMID: 38071795 DOI: 10.1016/j.ejmech.2023.115971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023]
Abstract
Pharmacological inhibition of dihydrofolate reductase (DHFR) is an established approach for treating a variety of human diseases, including foreign infections and cancer. However, treatment with classic DHFR inhibitors, such as methotrexate (MTX), are associated with negative side-effects and resistance mechanisms that have prompted the search for alternatives. The DHFR inhibitor pyrimethamine (Pyr) has compelling anti-cancer activity in in vivo models, but lacks potency compared to MTX, thereby requiring higher concentrations to induce therapeutic responses. The purpose of this work was to investigate structural analogues of Pyr to improve its in vitro and cellular activity. A series of 36 Pyr analogues were synthesized and tested in a sequence of in vitro and cell-based assays to monitor their DHFR inhibitory activity, cellular target engagement, and impact on breast cancer cell viability. Ten top compounds were identified, two of which stood out as potential lead candidates, 32 and 34. These functionalized Pyr analogues potently engaged DHFR in cells, at concentrations as low as 1 nM and represent promising DHFR inhibitors that could be further explored as potential anti-cancer agents.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Rosanne Persaud
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ujjwala Karmacharya
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sanaz Attarha
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Henok Sahile
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jonas E Olsen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Danielle Hanke
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Temilolu Idowu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David A Frank
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Bakhsh T, Abuzahrah SS, Qahl SH, Akela MA, Rather IA. Sugiol Masters Apoptotic Precision to Halt Gastric Cancer Cell Proliferation. Pharmaceuticals (Basel) 2023; 16:1528. [PMID: 38004394 PMCID: PMC10675088 DOI: 10.3390/ph16111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Sugiol, a natural compound with anticancer properties, has shown promise in various cancer types, but its potential in preventing gastric cancer remains uncertain. In this study, we aimed to examine the inhibitory effect of sugiol on human gastric cancer cell proliferation. Our findings demonstrate that sugiol effectively suppresses the proliferation of SNU-5 human gastric cancer cells, leading to apoptotic cell death. We assessed the chemo-preventive potential of sugiol via an MTT assay and confirmed the induction of oxidative stress using the H2DCFDA fluorescent dye. Treatment with sugiol at concentrations higher than 25 µM for 24 h resulted in an increase in intracellular levels of reactive oxygen species (ROS). This elevation of ROS levels inhibited cell-cycle progression and induced cell-cycle arrest at the G1 phase. Furthermore, our study revealed that sugiol reduces the viability and proliferation of SNU-5 cells in a dose-dependent manner. Importantly, ADME and toxicity analyses revealed that sugiol was effective and nontoxic at low doses. In parallel, we utilized the Swiss target prediction tool to identify potential targets for sugiol. Enzymes and nuclear receptors were identified as major targets. To gain insights into the molecular interactions, we performed structure-based molecular docking studies, focusing on the interaction between sugiol and STAT3. The docking results revealed strong binding interactions within the active site pocket of STAT3, with a binding affinity of -12.169 kcal/mole. Sugiol's -OH group, carbonyl group, and phenyl ring demonstrated hydrogen-bonding interactions with specific residues of the target protein, along with Vander Waals and hydrophobic interactions. These data suggest that sugiol has the potential to inhibit the phosphorylation of STAT3, which is known to play a crucial role in promoting the growth and survival of cancer cells. Targeting the dysregulated STAT3 signaling pathway holds promise as a therapeutic strategy for various human tumors. In combination with interventions that regulate cell cycle progression and mitigate the DNA damage response, the efficacy of these therapeutic approaches can be further enhanced. The findings from our study highlight the antiproliferative and apoptotic potential of sugiol against human gastric cancer cells (SNU-5). Moreover, the result underpins that sugiol's interactions with STAT3 may contribute to its inhibitory effects on cancer cell growth and proliferation. Further research is warranted to explore the full potential of sugiol as a therapeutic agent and its potential application in treating gastric cancer and other malignancies characterized by dysregulated STAT3 activity.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Samah Sulaiman Abuzahrah
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Safa H. Qahl
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Akela
- Department of Biology, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jedddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Han Z, Ju H. Meta-analysis of the intervention effects of taekwondo on metabolic syndrome indicators. Front Physiol 2023; 14:1069424. [PMID: 36733908 PMCID: PMC9887190 DOI: 10.3389/fphys.2023.1069424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Objective: To quantify the effect of taekwondo as an intervention on the indicators of metabolic syndrome and identify an intervention plan with the optimal effects. Methods: Combining the Cnki.net, Wanfang, PubMed, Web of Science, Embase, KISS, RISS, and DBPIA databases, this paper retrieved relevant references in Chinese, English, and Korean, applied Review Manager 5.4 software to evaluate the methodological quality of the included references according to the Cochrane manual, and utilized Comprehensive Meta-Analysis version 3.7 to perform statistical analyses. Result: A total of 45 references and 1079 related subjects were included in the analysis. The results of the meta-analysis showed that taekwondo has a beneficial effect on all indicators of metabolic syndrome (Hedges' g [effect size] = -0.615, -0.672, -0.497, -0.785, -0.591, and 0.435; p < 0.05). Subgroup analysis revealed the superior intervention effect of taekwondo on metabolic syndrome in women compared to men, middle-aged and elderly compared to other age groups, and abnormal metabolic syndrome indicators compared to normal values. Moreover, the best results were obtained for longer intervention durations-12 weeks-three times per week, for 40-50 min per session. In addition, the combination of intervention types (poomsae, kick, and taekwondo gymnastics) showed optimal effects. The exercise intensity should consider the characteristics of the intervention object and be generally set to medium or high intensity. Conclusion: Taekwondo can effectively improve metabolic syndrome, as evidenced by decreased body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), and triglyceride (TG) levels and increased high-density lipoprotein cholesterol (HDL-C) level. Taekwondo had the greatest effect on quinquagenarian women with abnormal levels of metabolic syndrome indicators. To maximize the intervention effect of taekwondo on metabolic syndrome, an exercise prescription of high-intensity poomsae, kick, and taekwondo gymnastics performed in 40-50 min sessions, three times weekly for 12 weeks is recommended.
Collapse
Affiliation(s)
- Zhengfa Han
- Department of Physical Education, Yongin University, Yongin, South Korea
| | - Hanyu Ju
- Department of Sports Science, Kyonggi University, Suwon, South Korea,*Correspondence: Hanyu Ju,
| |
Collapse
|