1
|
Chen M, Edwards SR, Maskey D, Woodruff TM, Tomlinson S, Reutens D. Complement Component 5 (C5) Deficiency Improves Cognitive Outcome After Traumatic Brain Injury and Enhances Treatment Effects of Complement Inhibitors C1-Inh and CR2-Crry in a Mouse Model. Neurotrauma Rep 2023; 4:663-681. [PMID: 37908321 PMCID: PMC10615070 DOI: 10.1089/neur.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
A potent effector of innate immunity, the complement system contributes significantly to the pathophysiology of traumatic brain injury (TBI). This study investigated the role of the complement cascade in neurobehavioral outcomes and neuropathology after TBI. Agents acting at different levels of the complement system, including 1) C1 esterase inhibitor (C1-Inh), 2) CR2-Crry, an inhibitor of all pathways acting at C3, and 3) the selective C5aR1 antagonist, PMX205, were administered at 1 h post-TBI. Their effects were evaluated on motor function using the rotarod apparatus, cognitive function using the active place avoidance (APA) task, and brain lesion size at a chronic stage after controlled cortical impact injury in C5-sufficient (C5+/+) and C5-deficient (C5-/-) CD1 mice. In post-TBI C5+/+ mice, rotarod performance was improved by CR2-Crry, APA performance was improved by CR2-Crry and PMX205, and brain lesion size was reduced by PMX205. After TBI, C5-/- mice performed better in the APA task compared with C5+/+ mice. C5 deficiency enhanced the effect of C1-Inh on motor function and brain damage and the effect of CR2-Crry on brain damage after TBI. Our findings support critical roles for C3 in motor deficits, the C3/C5/C5aR1 axis in cognitive deficits, and C5aR1 signaling in brain damage after TBI. Findings suggest the combination of C5 inhibition with C1-Inh and CR2-Crry as potential therapeutic strategies in TBI.
Collapse
Affiliation(s)
- Min Chen
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen R. Edwards
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Dhiraj Maskey
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen Tomlinson
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Reutens
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Delgardo M, Tang AJ, Tudor T, Pascual-Leone A, Connolly ES. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation. Front Cell Neurosci 2023; 17:1123365. [PMID: 37383840 PMCID: PMC10294424 DOI: 10.3389/fncel.2023.1123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.
Collapse
|
3
|
Liljedahl E, Konradsson E, Gustafsson E, Jonsson KF, Olofsson JK, Osther K, Ceberg C, Redebrandt HN. Combined anti-C1-INH and radiotherapy against glioblastoma. BMC Cancer 2023; 23:106. [PMID: 36717781 PMCID: PMC9887755 DOI: 10.1186/s12885-023-10583-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A more effective immune response against glioblastoma is needed in order to achieve better tumor control. Radiotherapy can induce anti-tumor mediated immune reactions, in addition to its dose response effects. The complement system can function as a bridge between innate and adaptive immune responses. Combining radiotherapy and complement activating therapy is theoretically interesting. METHODS Radiotherapy at 8 Gy × 2 was combined with treatment against C1-inhibitor (C1-INH), a potent inhibitor of activation of the classical pathway of the complement system. Anti-C1-INH was delivered as intratumoral injections. Fully immunocompetent Fischer 344 rats with NS1 glioblastoma tumors were treated. Survival was monitored as primary outcome. Models with either intracranial or subcutaneous tumors were evaluated separately. RESULTS In the intracranial setting, irradiation could prolong survival, but there was no additional survival gain as a result of anti-C1-INH treatment. In animals with subcutaneous tumors, combined radio-immunotherapy with anti-C1-INH and irradiation at 8 Gy × 2 significantly prolonged survival compared to control animals, whereas irradiation or anti-C1-INH treatment as single therapies did not lead to significantly increased survival compared to control animals. CONCLUSIONS Anti-C1-INH treatment could improve the efficacy of irradiation delivered at sub-therapeutic doses and delay tumor growth in the subcutaneous tumor microenvironment. In the intracranial setting, the doses of anti-C1-INH were not enough to achieve any survival effect in the present setting.
Collapse
Affiliation(s)
- Emma Liljedahl
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Elise Konradsson
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Karolina Förnvik Jonsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Jill K. Olofsson
- grid.5254.60000 0001 0674 042XDepartment for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Osther
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Crister Ceberg
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
van Erp IAM, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K. Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 2023; 20:284-303. [PMID: 36222978 PMCID: PMC10119357 DOI: 10.1007/s13311-022-01306-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuroinflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenuation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the complement cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.
Collapse
Affiliation(s)
- Inge A M van Erp
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands.
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Wouter Moojen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Chen M, Tieng QM, Du J, Edwards SR, Maskey D, Peshtenski E, Reutens D. Effects of C1-INH Treatment on Neurobehavioral Sequelae and Late Seizures After Traumatic Brain Injury in a Mouse Model of Controlled Cortical Impact. Neurotrauma Rep 2023; 4:124-136. [PMID: 36941878 PMCID: PMC10024590 DOI: 10.1089/neur.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
C1 human-derived C1 esterase inhibitor (C1-INH) is a U.S. Food and Drig Administration-approved drug with anti-inflammatory actions. In the present study, we investigated the therapeutic effects of C1-INH on acute and chronic neurobehavioral outcomes and on seizures in the chronic stage in a mouse traumatic brain injury (TBI) model. Adult male CD1 mice were subjected to controlled cortical impact and randomly allocated to receive C1-INH or vehicle solution 1 h post-TBI. Effects of C1-INH treatment on inflammatory responses and brain damage after TBI were examined using the Cytometric Bead Array, C5a enzyme-linked immunosorbent assay, Fluoro-Jade C staining, and Nissl staining. Neurobehavioral outcomes after TBI were assessed with modified neurological severity scores, the rotarod and open field tests, and the active place avoidance task. Video-electroencephalographic monitoring was performed in the 15th and 16th weeks after TBI to document epileptic seizures. We found that C1-INH treatment reduced TNFα expression and alleviated brain damage. Treatment with C1-INH improved neurological functions, increased locomotor activity, alleviated anxiety-like behavior, and exhibited an effect on seizures in the chronic stage after TBI. These findings suggest that C1-INH has beneficial effects on the treatment of TBI.
Collapse
Affiliation(s)
- Min Chen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Quang M. Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen R. Edwards
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhiraj Maskey
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Emil Peshtenski
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - David Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
- Address correspondence to: David Reutens, MD, Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Stem Cell Therapy for Sequestration of Traumatic Brain Injury-Induced Inflammation. Int J Mol Sci 2022; 23:ijms231810286. [PMID: 36142198 PMCID: PMC9499317 DOI: 10.3390/ijms231810286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.
Collapse
|
7
|
Genoud V, Migliorini D. Challenging Hurdles of Current Targeting in Glioblastoma: A Focus on Immunotherapeutic Strategies. Int J Mol Sci 2021; 22:3493. [PMID: 33800593 PMCID: PMC8036548 DOI: 10.3390/ijms22073493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma is the most frequent primary neoplasm of the central nervous system and still suffers from very poor therapeutic impact. No clear improvements over current standard of care have been made in the last decade. For other cancers, but also for brain metastasis, which harbors a very distinct biology from glioblastoma, immunotherapy has already proven its efficacy. Efforts have been pursued to allow glioblastoma patients to benefit from these new approaches, but the road is still long for broad application. Here, we aim to review key glioblastoma immune related characteristics, current immunotherapeutic strategies being explored, their potential caveats, and future directions.
Collapse
Affiliation(s)
- Vassilis Genoud
- Department of Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
- Brain Tumor and Immune Cell Engineering Laboratory, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, 1205 Geneva, Switzerland
| |
Collapse
|