1
|
Wymore Brand M, Sahin O, Hostetter JM, Trachsel J, Zhang Q, Wannemuehler MJ. Campylobacter jejuni persistently colonizes gnotobiotic altered Schaedler flora C3H/HeN mice and induces mild colitis. FEMS Microbiol Lett 2021; 367:5937419. [PMID: 33098301 DOI: 10.1093/femsle/fnaa163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human bacterial gastroenteritis but animal models for C. jejuni mediated disease remain limited because C. jejuni poorly colonizes immunocompetent, conventionally-reared (Conv-R) mice. Thus, a reliable rodent model (i.e. persistent colonization) is desirable in order to evaluate C. jejuni-mediated gastrointestinal disease and mechanisms of pathogenicity. As the nature and complexity of the microbiota likely impacts colonization resistance for C. jejuni, Conv-R and gnotobiotic C3H/HeN mice were used to evaluate the persistence of C. jejuni colonization and development of disease. A total of four C. jejuni isolates readily and persistently colonized ASF mice and induced mild mucosal inflammation in the proximal colon, but C. jejuni did not stably colonize nor induce lesions in Conv-R mice. This suggests that the pathogenesis of C. jejuni is influenced by the microbiota, and that ASF mice offer a reproducible model to study the influence of the microbiota on the ability of C. jejuni to colonize the gut and to mediate gastroenteritis.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Jesse M Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, USA
| | - Julian Trachsel
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
2
|
Toll-Like Receptor-4 Is Involved in Mediating Intestinal and Extra-Intestinal Inflammation in Campylobacter coli-Infected Secondary Abiotic IL-10 -/- Mice. Microorganisms 2020; 8:microorganisms8121882. [PMID: 33261211 PMCID: PMC7761268 DOI: 10.3390/microorganisms8121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Human Campylobacter infections are emerging worldwide and constitute significant health burdens. We recently showed that the immunopathological sequelae in Campylobacter jejuni-infected mice were due to Toll-like receptor (TLR)-4 dependent immune responses induced by bacterial lipooligosaccharide (LOS). Information regarding the molecular mechanisms underlying Campylobacter coli-host interactions are scarce, however. Therefore, we analyzed C. coli-induced campylobacteriosis in secondary abiotic IL-10−/− mice with and without TLR4. Mice were infected perorally with a human C. coli isolate or with a murine commensal Escherichia coli as apathogenic, non-invasive control. Independent from TLR4, C. coli and E. coli stably colonized the gastrointestinal tract, but only C. coli induced clinical signs of campylobacteriosis. TLR4−/− IL-10−/− mice, however, displayed less frequently fecal blood and less distinct histopathological and apoptotic sequelae in the colon versus IL-10−/− counterparts on day 28 following C. coli infection. Furthermore, C. coli-induced colonic immune cell responses were less pronounced in TLR4−/− IL-10−/− as compared to IL-10−/− mice and accompanied by lower pro-inflammatory mediator concentrations in the intestines and the liver of the former versus the latter. In conclusion, our study provides evidence that TLR4 is involved in mediating C. coli-LOS-induced immune responses in intestinal and extra-intestinal compartments during murine campylobacteriosis.
Collapse
|
3
|
Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P, Weiss S, Jensen L, Kratzer A, Kraenkel N, Müller C, Börnigen D, Hirose T, Blankenberg S, Escher F, Kühl AA, Kuss AW, Meder B, Landmesser U, Zeller T, Poller W. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 2020; 115:1886-1906. [PMID: 30924864 DOI: 10.1093/cvr/cvz085] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Inflammation is a key driver of atherosclerosis and myocardial infarction (MI), and beyond proteins and microRNAs (miRs), long noncoding RNAs (lncRNAs) have been implicated in inflammation control. To obtain further information on the possible role of lncRNAs in the context of atherosclerosis, we obtained comprehensive transcriptome maps of circulating immune cells (peripheral blood mononuclear cells, PBMCs) of early onset MI patients. One lncRNA significantly suppressed in post-MI patients was further investigated in a murine knockout model. METHODS AND RESULTS Individual RNA-sequencing (RNA-seq) was conducted on PBMCs from 28 post-MI patients with a history of MI at age ≤50 years and stable disease ≥3 months before study participation, and from 31 healthy individuals without manifest cardiovascular disease or family history of MI as controls. RNA-seq revealed deregulated protein-coding transcripts and lncRNAs in post-MI PBMCs, among which nuclear enriched abundant transcript (NEAT1) was the most highly expressed lncRNA, and the only one significantly suppressed in patients. Multivariate statistical analysis of validation cohorts of 106 post-MI patients and 85 controls indicated that the PBMC NEAT1 levels were influenced (P = 0.001) by post-MI status independent of statin intake, left ventricular ejection fraction, low-density lipoprotein or high-density lipoprotein cholesterol, or age. We investigated NEAT1-/- mice as a model of NEAT1 deficiency to evaluate if NEAT1 depletion may directly and causally alter immune regulation. RNA-seq of NEAT1-/- splenocytes identified disturbed expression and regulation of chemokines/receptors, innate immunity genes, tumour necrosis factor (TNF) and caspases, and increased production of reactive oxygen species (ROS) under baseline conditions. NEAT1-/- spleen displayed anomalous Treg and TH cell differentiation. NEAT1-/- bone marrow-derived macrophages (BMDMs) displayed altered transcriptomes with disturbed chemokine/chemokine receptor expression, increased baseline phagocytosis (P < 0.0001), and attenuated proliferation (P = 0.0013). NEAT1-/- BMDMs responded to LPS with increased (P < 0.0001) ROS production and disturbed phagocytic activity (P = 0.0318). Monocyte-macrophage differentiation was deregulated in NEAT1-/- bone marrow and blood. NEAT1-/- mice displayed aortic wall CD68+ cell infiltration, and there was evidence of myocardial inflammation which could lead to severe and potentially life-threatening structural damage in some of these animals. CONCLUSION The study indicates distinctive alterations of lncRNA expression in post-MI patient PBMCs. Regarding the monocyte-enriched NEAT1 suppressed in post-MI patients, the data from NEAT1-/- mice identify NEAT1 as a novel lncRNA-type immunoregulator affecting monocyte-macrophage functions and T cell differentiation. NEAT1 is part of a molecular circuit also involving several chemokines and interleukins persistently deregulated post-MI. Individual profiling of this circuit may contribute to identify high-risk patients likely to benefit from immunomodulatory therapies. It also appears reasonable to look for new therapeutic targets within this circuit.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Bernhard H Rauch
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Site Greifswald, Felix-Hausdorff-Strasse 3, Greifswald
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 jo, Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Jan Haas
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Andrea Stroux
- Institute for Biometry and Clinical Epidemiology, Hindenburgdamm 30, Berlin, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Paul Schumann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Lars Jensen
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Nicolle Kraenkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Felicitas Escher
- German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Institute of Cardiac Diagnostics and Therapy (IKDT), Hindenburgdamm 30, Berlin, Germany.,Department of Cardiology CVK, Hindenburgdamm 30, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin-Core Unit Immunopathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Benjamin Meder
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,Department of Genetics, Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, Berlin, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Wolfgang Poller
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Hindenburgdamm 30, Berlin, Germany
| |
Collapse
|
4
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
5
|
Gast M, Rauch BH, Nakagawa S, Haghikia A, Jasina A, Haas J, Nath N, Jensen L, Stroux A, Böhm A, Friebel J, Rauch U, Skurk C, Blankenberg S, Zeller T, Prasanth KV, Meder B, Kuss A, Landmesser U, Poller W. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res 2020; 115:302-314. [PMID: 30101304 DOI: 10.1093/cvr/cvy202] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Aims The immune system is considered a key driver of atherosclerosis, and beyond proteins and microRNAs (miRs), long non-coding RNAs (lncRNAs) are implicated in immune control. We previously described that lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in cardiac innate immunity in a myocarditis model. Here, we investigated the impact of MALAT1 deficiency upon atherosclerosis development. Methods and results Heterozygous MALAT1-deficient ApoE-/- mice displayed massive immune system dysregulation and atherosclerosis within 2 months even when kept on normal diet. Aortic plaque area (P < 0.05) and aortic root plaque size (P < 0.001) were increased in MALAT1-deficient vs. MALAT1-wildtype ApoE-/- mice. Serum levels of interferon-γ (IFN-γ), tumour necrosis factor (TNF), and interleukin 6 (IL6) were elevated (P < 0.001) in MALAT1-deficient animals. MALAT1-deficient bone marrow-derived macrophages showed enhanced expression of TNF (P = 0.001) and inducible NO synthase (NOS2) (P = 0.002), suppressed MMP9 (P < 0.001), and impaired phagocytic activity (P < 0.001) upon lipopolysaccharide stimulation. RNA-sequencing revealed grossly altered transcriptomes of MALAT1-deficient splenocytes already at baseline, with massive induction of IFN- γ, TNF, NOS2, and granzyme B; CC and CXC chemokines and CCR8; and innate immunity genes interferon-induced protein with tetratricopeptide repeats (IFIT)1/3, interferon-induced transmembrane protein (IFITM)1/3, ISG15. Multiple miRs were up to 45-fold upregulated. Further, selective ablation of the cytosolic part of the MALAT1 system only, the enzymatically MALAT1-derived mascRNA, resulted in massive induction of TNF (P = 0.004) and IL6 (P = 0.028) in macrophages. Northern analysis of post-myocardial infarction patient vs. control peripheral blood mononuclear cells showed reduced (P = 0.005) mascRNA in the patients. CHART-enriched RNA-sequencing reads at the genomic loci of MALAT1 and neighbouring nuclear enriched abundant transcript (NEAT1) documented direct interaction between these lncRNA transcripts. Conclusion The data suggest a molecular circuit involving the MALAT1-mascRNA system, interactions between MALAT1 and NEAT1, and key immune effector molecules, cumulatively impacting upon the development of atherosclerosis. It appears reasonable to look for therapeutic targets in this circuit and to screen for anomalies in the NEAT1-MALAT1 region in humans, too, as possible novel disease risk factors.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Bernhard H Rauch
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Felix-Hausdorff-Strasse 3, Greifswald, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 jo, Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Arash Haghikia
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Hindenburgdamm 30, Berlin, Germany
| | - Andrzej Jasina
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Jan Haas
- Institute for Cardiomyopathies, Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Neetika Nath
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany.,Institute for Bioinformatics, Universitätsmedizin Greifswald, Walther-Rathenau-Strasse 48, Greifswald, Germany
| | - Lars Jensen
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany.,Institute for Bioinformatics, Universitätsmedizin Greifswald, Walther-Rathenau-Strasse 48, Greifswald, Germany
| | - Andrea Stroux
- Institute for Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, Berlin, Germany
| | - Andreas Böhm
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany
| | - Julian Friebel
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Ursula Rauch
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Chemical and Life Sciences Laboratory, 601 S. Goodwin Avenue, Urbana, IL, USA
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Andreas Kuss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany.,Institute for Bioinformatics, Universitätsmedizin Greifswald, Walther-Rathenau-Strasse 48, Greifswald, Germany
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Hindenburgdamm 30, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| |
Collapse
|
6
|
Lobo de Sá FD, Butkevych E, Nattramilarasu PK, Fromm A, Mousavi S, Moos V, Golz JC, Stingl K, Kittler S, Seinige D, Kehrenberg C, Heimesaat MM, Bereswill S, Schulzke JD, Bücker R. Curcumin Mitigates Immune-Induced Epithelial Barrier Dysfunction by Campylobacter jejuni. Int J Mol Sci 2019; 20:ijms20194830. [PMID: 31569415 PMCID: PMC6802366 DOI: 10.3390/ijms20194830] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10−/− mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response—represented by TNF-α, IL-1β, and IL-6 secretion—was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients.
Collapse
Affiliation(s)
- Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Anja Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Verena Moos
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Julia C Golz
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany.
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, 12277 Berlin, Germany.
| | - Sophie Kittler
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, 30559 Hannover, Germany.
| | - Diana Seinige
- University of Veterinary Medicine Hannover, Research Center for Emerging Infections and Zoonoses, 30559 Hannover, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany.
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
7
|
Schmidt AM, Escher U, Mousavi S, Tegtmeyer N, Boehm M, Backert S, Bereswill S, Heimesaat MM. Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model. Gut Pathog 2019; 11:24. [PMID: 31131028 PMCID: PMC6525468 DOI: 10.1186/s13099-019-0306-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni infections constitute serious threats to human health with increasing prevalences worldwide. Our knowledge regarding the molecular mechanisms underlying host–pathogen interactions is still limited. Our group has established a clinical C. jejuni infection model based on abiotic IL-10−/− mice mimicking key features of human campylobacteriosis. In order to further validate this model for unraveling pathogen-host interactions mounting in acute disease, we here surveyed the immunopathological features of the important C. jejuni virulence factors FlaA and FlaB and the major adhesin CadF (Campylobacter adhesin to fibronectin), which play a role in bacterial motility, protein secretion and adhesion, respectively. Methods and results Therefore, abiotic IL-10−/− mice were perorally infected with C. jejuni strain 81-176 (WT) or with its isogenic flaA/B (ΔflaA/B) or cadF (ΔcadF) deletion mutants. Cultural analyses revealed that WT and ΔcadF but not ΔflaA/B bacteria stably colonized the stomach, duodenum and ileum, whereas all three strains were present in the colon at comparably high loads on day 6 post-infection. Remarkably, despite high colonic colonization densities, murine infection with the ΔflaA/B strain did not result in overt campylobacteriosis, whereas mice infected with ΔcadF or WT were suffering from acute enterocolitis at day 6 post-infection. These symptoms coincided with pronounced pro-inflammatory immune responses, not only in the intestinal tract, but also in other organs such as the liver and kidneys and were accompanied with systemic inflammatory responses as indicated by increased serum MCP-1 concentrations following C. jejuni ΔcadF or WT, but not ΔflaA/B strain infection. Conclusion For the first time, our observations revealed that the C. jejuni flagellins A/B, but not adhesion mediated by CadF, are essential for inducing murine campylobacteriosis. Furthermore, the secondary abiotic IL-10−/− infection model has been proven suitable not only for detailed investigations of immunological aspects of campylobacteriosis, but also for differential analyses of the roles of distinct C. jejuni virulence factors in induction and progression of disease. Electronic supplementary material The online version of this article (10.1186/s13099-019-0306-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna-Maria Schmidt
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Soraya Mousavi
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Nicole Tegtmeyer
- 2Institute for Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Manja Boehm
- 2Institute for Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Steffen Backert
- 2Institute for Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Stefan Bereswill
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
8
|
Schmidt AM, Escher U, Mousavi S, Boehm M, Backert S, Bereswill S, Heimesaat MM. Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol 2019; 9:79. [PMID: 30984628 PMCID: PMC6449876 DOI: 10.3389/fcimb.2019.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 01/20/2023] Open
Abstract
Even though human Campylobacter jejuni infections are progressively increasing worldwide, the underlying molecular mechanisms of pathogen-host-interactions are still not fully understood. We have recently shown that the secreted serine protease HtrA plays a key role in C. jejuni cellular invasion and transepithelial migration in vitro, and is involved in the onset of intestinal pathology in murine infection models in vivo. In the present study, we investigated whether the protease activity of HtrA had an impact in C. jejuni induced acute enterocolitis. For this purpose, we perorally infected secondary abiotic IL-10-/- mice with wildtype C. jejuni strain NCTC11168 (11168WT) or isogenic bacteria carrying protease-inactive HtrA with a single point mutation at S197A in the active center (11168HtrA-S197A). Irrespective of the applied pathogenic strain, mice harbored similar C. jejuni loads in their feces and exhibited comparably severe macroscopic signs of acute enterocolitis at day 6 postinfection (p.i.). Interestingly, the 11168HtrA-S197A infected mice displayed less pronounced colonic apoptosis and immune cell responses, but enhanced epithelial proliferation as compared to the 11168WT strain infected controls. Furthermore, less distinct microscopic sequelae in 11168HtrA-S197A as compared to parental strain infected mice were accompanied by less distinct colonic secretion of pro-inflammatory cytokines such as MCP-1, IL-6, TNF, and IFN-γ in the former as compared to the latter. Strikingly, the S197A point mutation was additionally associated with less pronounced systemic pro-inflammatory immune responses as assessed in serum samples. In conclusion, HtrA is a remarkable novel virulence determinant of C. jejuni, whose protease activity is not required for intestinal colonization and establishment of disease, but aggravates campylobacteriosis by triggering apoptosis and pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna-Maria Schmidt
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Manja Boehm
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|