1
|
Nelson DJ, Chugh K, Pua HH, Haselton FR. A Software Tool for Reagent Design to Expand Access to Single-Nucleotide Variant Detection by the Oligonucleotide Ligation Assay. J Mol Diagn 2025; 27:184-198. [PMID: 39818318 DOI: 10.1016/j.jmoldx.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Single-nucleotide variants (SNVs) and polymorphisms are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding single-nucleotide polymorphism/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with PCR. Yet, the OLA design process remains intensive, and criteria for success are uncertain. To assist in the design process, this study describes OLAgen, an open-source tool to automate development of OLAs and their coupled PCR assays. The software facilitates alignment of sequences surrounding SNVs and generates ligation probes while screening for dimerization potential. OLAgen successfully produced ligation probes that closely matched previously validated designs for HIV-1, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and KRAS, confirming its reliability and potential for clinical applications. The tool was used to generate new assays targeting Mycobacterium tuberculosis drug resistance and variants in the human JAK2, BRAF, and factor V genes, all of which demonstrated 100% sensitivity and specificity in controlled laboratory experiments. The OLAgen predicted assay designs detected mutant frequencies as low as 1% to 5% in wild-type backgrounds in proof-of-concept laboratory studies. OLAgen represents a significant advancement in accessible assay design, promoting the broader application of OLA technology in clinical and research settings.
Collapse
Affiliation(s)
- Dalton J Nelson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kunal Chugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Heather H Pua
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
2
|
Keikha M, Majidzadeh M. Beijing genotype of Mycobacterium tuberculosis is associated with extensively drug-resistant tuberculosis: A global analysis. New Microbes New Infect 2021; 43:100921. [PMID: 34466269 PMCID: PMC8383003 DOI: 10.1016/j.nmni.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
We found that the frequency of Beijing genotype among XDR-TB strains was high. The data in this study would help guide the TB control program, and we however need further investigation to confirm the reliability of the present findings.
Collapse
Affiliation(s)
- M. Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Majidzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Stagg HR, Lipman MC, McHugh TD, Jenkins HE. Isoniazid-resistant tuberculosis: a cause for concern? Int J Tuberc Lung Dis 2018; 21:129-139. [PMID: 28234075 DOI: 10.5588/ijtld.16.0716] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The drug isoniazid (INH) is a key component of global tuberculosis (TB) control programmes. It is estimated, however, that 16.1% of TB disease cases in the former Soviet Union countries and 7.5% of cases outside of these settings have non-multidrug-resistant (MDR) INH resistance. Resistance has been linked to poorer treatment outcomes, post-treatment relapse and death, at least for specific sites of disease. Multiple genetic loci are associated with phenotypic resistance; however, the relationship between genotype and phenotype is complex, and restricts the use of rapid sequencing techniques as part of the diagnostic process to determine the most appropriate treatment regimens for patients. The burden of resistance also influences the usefulness of INH preventive therapy. Despite seven decades of INH use, our knowledge in key areas such as the epidemiology of resistant strains, their clinical consequences, whether tailored treatment regimens are required and the role of INH resistance in fuelling the MDR-TB epidemic is limited. The importance of non-MDR INH resistance needs to be re-evaluated both globally and by national TB control programmes.
Collapse
Affiliation(s)
- H R Stagg
- Institute of Global Health, UCL, London, UK
| | - M C Lipman
- University College London (UCL) Respiratory, Division of Medicine, UCL, London, UK;, Royal Free London National Health Service Foundation Trust, London, UK
| | - T D McHugh
- Centre for Clinical Microbiology, UCL, London, UK
| | - H E Jenkins
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Abkar R, Zolfaghari MR, Arjomandzadegan M, Ahmadi A, Sadrnia M, Kahbazi M, Sarmadian H, Moaddab R. Minor Contribution of inhA-15 Mutations to the Rapid Detection of Isoniazid Resistance in Mycobacterium Tuberculosis Isolates. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:161-3. [PMID: 26989290 PMCID: PMC4764969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Roya Abkar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Mohammad Arjomandzadegan
- Tuberculosis and Pediatric Infectious Research Center, Arak University of Medical Sciences, Arak, Iran,Correspondence: Mohammad Arjomandzadegan, PhD; Tuberculosis and Pediatric Infectious Research Center, Department of Microbiology, Sar-Dasht, Basij Square, 38481-7-6941, Arak, Iran Tel: +98 86 34173502 ,
| | - Azam Ahmadi
- Tuberculosis and Pediatric Infectious Research Center, Arak University of Medical Sciences, Arak, Iran
| | | | - Manijeh Kahbazi
- Tuberculosis and Pediatric Infectious Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Sarmadian
- Tuberculosis and Pediatric Infectious Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Reza Moaddab
- Medical Laboratory Sciences and Research Center for TB and Pulmonary Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Sarmadian H, Nazari R, Zolfaghari M, Pirayandeh M, Sadrnia M, Arjomandzadegan M, Titov L, Rajabi F, Ahmadi A, Shojapoor M. Study of carD gene sequence in clinical isolates of Mycobacterium tuberculosis. Acta Microbiol Immunol Hung 2014; 61:1-10. [PMID: 24631749 DOI: 10.1556/amicr.61.2014.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis growth rate is closely coupled to rRNA transcription which is regulated through carD gene. The aim of this study was to determine the sequence of carD gene in drug susceptible and resistant clinical isolates of M. tuberculosis and designing of a PCR assay based on carD sequence for rapid detection of this bacterium.Specific primers for amplification of carD gene were carefully designed, so that whole sequence of gene could be amplified; therefore primers were positioned at the upstream (promoter of this gene and ispD gene) and downstream (in ispD gene). DNA from 41 clinical isolates of M. tuberculosis with different pattern of drug resistance was used in the study. PCR conditions and annealing temperature were designed by means of online programs. PCR products were sequenced by ABI system.PCR product of carD gene was a 524 bp fragment. This method could detect all resistant and susceptible strains of M. tuberculosis. The size of amplified fragment was similar in all investigated samples. Sequence analysis showed that there was similar sequence in all of our isolates therefore probably this gene is considered to be conservative. Translation of nucleotide mode to amino acids was showed that TRCF domain in N-terminal of protein CarD was found to be fully conservative.This is the first study on the sequence of carD gene in clinical isolates of M. tuberculosis. This conservative gene is recommended for use as a target for designing of suitable inhibitors as anti-tuberculosis drug because its importance for life of MTB. In the other hand, a PCR detection method based on detection of carD gene was recommended for rapid detection in routine test.
Collapse
Affiliation(s)
- Hossein Sarmadian
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Razieh Nazari
- 2 Islamic Azad University Department of Microbiology, Faculty of Basic Sciences, Qom Branch Qom Iran
| | - Mohammad Zolfaghari
- 2 Islamic Azad University Department of Microbiology, Faculty of Basic Sciences, Qom Branch Qom Iran
| | - Mina Pirayandeh
- 2 Islamic Azad University Department of Microbiology, Faculty of Basic Sciences, Qom Branch Qom Iran
| | - Maryam Sadrnia
- 3 Payame Noor University Department of Biology P.O. Box 19395-4697 Tehran Iran
| | - Mohammad Arjomandzadegan
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Leonid Titov
- 4 Belarusian Research Institute for Epidemiology and Microbiology Minsk Belarus
| | - Fariba Rajabi
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Azam Ahmadi
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Research Center Arak Iran
| | - Mana Shojapoor
- 5 Arak University of Medical Sciences Research Center of Molecular Medicine Arak Iran
| |
Collapse
|
6
|
Rosales-Klintz S, Jureen P, Zalutskayae A, Skrahina A, Xu B, Hu Y, Pineda-Garcia L, Merza MA, Muntean I, Bwanga F, Joloba M, Hoffner SE. Drug resistance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions. Int J Mycobacteriol 2012; 1:124-30. [DOI: 10.1016/j.ijmyco.2012.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022] Open
|
7
|
Khrustalev VV, Arjomandzadegan M, Barkovsky EV, Titov LP. Low rates of synonymous mutations in sequences of Mycobacterium tuberculosis GyrA and KatG genes. Tuberculosis (Edinb) 2012; 92:333-44. [PMID: 22521568 DOI: 10.1016/j.tube.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 11/19/2022]
Abstract
Partial sequences of KatG and GyrA genes have been obtained from multi and extensively drug-resistant (MDR and XDR) clinical isolates of Mycobacterium tuberculosis. Nonsynonymous (DN) and synonymous (DS) distances between those sequences have been calculated by Kumar method. Results revealed that DN is significantly higher than DS between some pairs of partial GyrA sequences. We found out that DN is higher than DS in many other partial and complete sequences of KatG and GyrA coding regions deposited in GenBank. The cause of the DN > DS situation is in several nonsynonymous substitutions occurrence (which may be associated with drug-resistance or not) in the absence of synonymous substitutions. Low rates of synonymous mutations occurrence is a consequence of the strong mutational GC-pressure. Due to the high saturation of third codon positions by guanine and cytosine (78.81 ± 0.17% for all the genes from M. tuberculosis H37Rv genome), the probability to be synonymous for the nucleotide mutation of preferable (AT to GC) direction is low. Fixation of a single nonsynonymous mutation leading to drug-resistance is a consequence of Darwinian selection. This clear example of Darwinian selection on the molecular level can be confirmed by selection test (DN > DS) only in case of DN and DS calculation in pairs of sequences possessing at least two additional nonsynonymous mutations which may be neutral or excessive.
Collapse
|
8
|
Arjomandzadegan M, Owlia P, Ranjbar R, Farazi A, Sofian M, Sadrnia M, Surkova L, Titov L. Rapid and simple approach for identification of Mycobacterium tuberculosis and M. bovis by detection of regulatory gene whiB7. Acta Microbiol Immunol Hung 2011; 58:65-74. [PMID: 21450556 DOI: 10.1556/amicr.58.2011.1.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Identification of Mycobacterium tuberculosis and M. bovis is necessary for the application of adequate drug therapy. PCR amplification is a good tool for this purpose, but choosing proper target is of a great concern. We describe a PCR assay for fast detection of M. tuberculosis and M. bovis.As a BLAST and BLASTP search we selected regulatory gene whiB7 that encodes multi-drug resistance in this bacterium. Thirty clinical isolates of M. tuberculosis were sequenced and all the mutations in gene whiB7 were detected. The best set of several pairs of primers was selected and used in comparison by rpoB gene for differentiation of M. bovis, M. avium, M. kansasii, M. phlei, M. fortuitum, M. terrae, seven non-pathogenic Mycobacterium isolates and 30 clinical isolates of M. tuberculosis.It was proved that only clinical isolates of M. tuberculosis and M. bovis have positive bands of 667 bp whiB7. Other non-tuberculous and non-pathogenic isolates did not show any positive sign. Furthermore, 667-bp PCR products of whiB7 gene were observed for ten positive sputum samples (preliminarily approved to be positive for M. tuberculosis by commercially real-time based method), but no bands were detected in 5 negative sputum samples. RpoB gene could not differentiate non-tuberculous strains and non-pathogenic isolates from pathogenic clinical isolates. We concluded that PCR amplification of the gene coding for the WhiB7 protein could be successfully used as a good tool for rapid identification of M. tuberculosis and M. bovis. We propose application of this method as a rapid and simple approach in mycobacteriological laboratories.
Collapse
Affiliation(s)
| | | | - R. Ranjbar
- 4 Baqiyatallah University of Medical Sciences Molecular Biology Research Center Tehran Iran
| | - A. Farazi
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Diseases Research Center Arak Iran
| | - Masume Sofian
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Diseases Research Center Arak Iran
| | - Maryam Sadrnia
- 5 Belarusian State University Faculty of Biology, Department of Genetics Minsk Belarus
| | - Larisa Surkova
- 6 Institute of Pulmonology and Tuberculosis Minsk Belarus
| | - L. Titov
- 7 Research Institute of Epidemiology and Microbiology Minsk Belarus
| |
Collapse
|
9
|
Arjomandzadegan M, Owlia P, Ranjbar R, Farazi A, Sofian M, Sadrnia M, Ghaznavi-Rad E, Surkova L, Titov L. Prevalence of mutations at codon 463 of katG gene in MDR and XDR clinical isolates of Mycobacterium tuberculosis in Belarus and application of the method in rapid diagnosis. Acta Microbiol Immunol Hung 2011; 58:51-63. [PMID: 21450555 DOI: 10.1556/amicr.58.2011.1.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. In respect to high GC content of Mycobacterium tuberculosis, nonsynonymous mutations are dominant in this group. In this study a collection of 145 M. tuberculosis isolates was used to evaluate the conferring mutations in nucleotide 1388 of katG gene (KatG463) in resistance to isoniazid. A PCR-RFLP method was applied in comparison with DNA sequencing and anti-mycobacterial susceptibility testing. From all studied patients, 98 (67.6%) were men, 47 (32.4%) were women, 3% were <15 and 9% were >65 years old; male to female ratio was 1:2.4. PCR result of katG for a 620-bp amplicon was successful for all purified M. tuberculosis isolates and there was no positive M. tuberculosis culture with PCR negative results (100% specificity). Subsequent PCR RFLP of the katG identified mutation at KatG463 in 33.3%, 57.8% and 59.2% of our clinically susceptible, multidrug resistant TB (MDR) and extensively drug resistant (XDR) isolates, respectively. Strains of H37Rv and Academic had no any mutations in this codon. M. bovis was used as a positive control for mutation in KatG463. Automated DNA sequencing of the katG amplicon from randomly selected INH-susceptible and resistant isolates verified 100% sequence accuracy of the point mutations detected by PCR-RFLP. We concluded that codon 463 was a polymorphic site that is associated to INH resistance (a missense or "quiet" mutation). RFLP results of katG amplicons were identical to those of sequence method. Our PCR-RFLP method has a potential application for rapid diagnosis of M. tuberculosis with a high specificity.
Collapse
Affiliation(s)
| | | | - R. Ranjbar
- 4 Baqiyatallah University of Medical Sciences Molecular Biology Research Center Tehran Iran
| | - A. Farazi
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Diseases Research Center Arak Iran
| | - Masume Sofian
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Diseases Research Center Arak Iran
| | - Maryam Sadrnia
- 5 Belarusian State University Faculty of Biology, Department of Genetic Minsk Belarus
| | - E. Ghaznavi-Rad
- 1 Arak University of Medical Sciences Tuberculosis and Pediatric Infectious Diseases Research Center Arak Iran
| | - Larisa Surkova
- 6 Institute of Pulmonology and Tuberculosis Minsk Belarus
| | - L. Titov
- 7 Research Institute of Epidemiology and Microbiology Minsk Belarus
| |
Collapse
|