1
|
Tékus V, Borbély É, Kiss T, Perkecz A, Kemény Á, Horváth J, Kvarda A, Pintér E. Investigation of Lake Hévíz Mineral Water Balneotherapy and Hévíz Mud Treatment in Murine Osteoarthritis and Rheumatoid Arthritis Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4816905. [PMID: 30224931 PMCID: PMC6129852 DOI: 10.1155/2018/4816905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Arthritic diseases are the most frequent causes of chronic pain and disability. Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and progressive structural joint damage. Osteoarthritis is a degenerative process of the articular cartilage associated with hypertrophic changes in the bone. The aim of the present study was to investigate the anti-inflammatory and analgesic effects of Hévíz thermal water and mud in monosodium iodoacetate- (MIA-) (25 mg/ml, 20 μl i.a.) induced osteoarthritis and Complete Freund's adjuvant- (CFA-) (1 mg/ml, 50-50 μl s.c) induced rheumatoid arthritis murine models. The mechanonociceptive threshold of female NMRI mice (n=6- 8 mice/ group) was measured by aesthesiometry, and paw volume was monitored with plethysmometry, knee joint diameter with digital micrometer, and dynamic weight bearing on the hind limbs with a Bioseb instrument. Periarticular bone destruction was assessed by SkyScan 1176 in vivo micro-CT. Inflammatory cytokines were detected by ELISA in plasma samples. Treatments (30 min, every working day) with tap water, sand, and a combined therapy of tap water and sand served as controls. Hévíz medicinal water and combined treatment with water and mud significantly decreased the mechanical hyperalgesia and knee oedema in MIA-induced osteoarthritis model. However, balneotherapy did not influence mechanical hyperalgesia, weight bearing, or oedema formation induced by CFA. Neither medicinal water nor mud treatment ameliorated deep structural damage of the bones or the joints in the animal models. On the basis of the present findings, we conclude that balneotherapy is an effective complementary treatment to reduce the pain sensation and swelling in degenerative joint diseases such as osteoarthritis. Our experimental data are in agreement with the previous human studies that also confirmed antinociceptive and anti-inflammatory effects of thermal water and Hévíz mud treatments.
Collapse
Affiliation(s)
- V. Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - É. Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - T. Kiss
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - A. Perkecz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
| | - Á. Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
| | - J. Horváth
- Saint Andrew Hospital for Rheumatic Diseases, H-8380, Héviz, Dr. Schulhof Vilmos Sétány 1, Hungary
| | - A. Kvarda
- Saint Andrew Hospital for Rheumatic Diseases, H-8380, Héviz, Dr. Schulhof Vilmos Sétány 1, Hungary
| | - E. Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624, Pécs, Szigeti U. 12, Hungary
- János Szentágothai Research Centre, University of Pécs, H-7634, Pécs, Ifjúság U. 34, Hungary
- PharmInVivo Ltd, H-7629, Pécs, Szondi György U. 10, Hungary
| |
Collapse
|
2
|
Aszalós JM, Krett G, Anda D, Márialigeti K, Nagy B, Borsodi AK. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes. Extremophiles 2016; 20:603-20. [PMID: 27315168 DOI: 10.1007/s00792-016-0849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Collapse
Affiliation(s)
- Júlia Margit Aszalós
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|