1
|
Kocsis B, Boldizsár I, Kovács GM, Nagy T, Gyémánt G, Csillag K, Pócsi I, Leiter É. Could the transcription factor AtnN coordinating the aspercryptin secondary metabolite gene cluster in Aspergillus nidulans be a global regulator? Fungal Biol 2024; 128:2311-2316. [PMID: 39643398 DOI: 10.1016/j.funbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Products of dormant secondary metabolite gene clusters of fungal genomes can be exploited for medical purposes as bioactive agents. These clusters can be switched on under oxidative stress and may endow fungi with a versatile chemical armory in a competitive niche. In Aspergillus nidulans, the aspercryptin gene cluster, including the synthase [atnA (AN7884)] and its transcription factor (atnN), was activated under menadione sodium bisulfite (MSB) treatment. In this study, we generated and phenotypically examined the gene deletion and overexpression mutants of atnN and studied the secondary metabolite production of the mutants. Overexpression of atnN significantly reduced the colony growth of surface cultures compared to the control. The ΔatnN gene deletion strain showed higher sensitivity to tert-butyl hydroperoxide (tBOOH), while the atnNOE strain was more resistant to MSB, Congo Red, and sorbitol. Interestingly, deletion of atnN decreased cleistothecia formation of A. nidulans. Manipulation of atnN affected the synthesis of several secondary metabolites, for example, the siderophore production of A. nidulans. The extracellular triacetylfusarinine C (TAFC) production decreased, while the intracellular ferricrocin (FC) concentration of the cultures increased in the atnNOE mutant cultivating A. nidulans in a complex medium containing 1 % mycological peptone and 2 % maltose. In Czapek-Dox Broth medium, increased asperthecin production was observed in the ΔatnN mutant. The mycotoxin sterigmatocystin synthesis elevated in the ΔatnN mutant, while reduced in the atnNOE mutant on minimal medium. Our study supports previous observations that secondary metabolite production is coordinated in a complex way, and the linkage of stress response, sexual reproduction, and secondary metabolite production can be governed by several transcription factors.
Collapse
Affiliation(s)
- Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary; HUN-REN-DE Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, Eötvös Loránd University, Hungary; Department of Pharmacognosy, Semmelweis University, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, Eötvös Loránd University, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary; HUN-REN-DE Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary; HUN-REN-DE Fungal Stress Biology Research Group, Debrecen, Hungary.
| |
Collapse
|
2
|
Lu Y, Wang H, Wang Z, Cong Y, Zhang P, Liu G, Liu C, Chi Z, Chi Z. Metabolic Rewiring Improves the Production of the Fungal Active Targeting Molecule Fusarinine C. ACS Synth Biol 2019; 8:1755-1765. [PMID: 31268300 DOI: 10.1021/acssynbio.9b00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Author: Recently, increasing research in siderophores has been dedicated to their possible medical applications in diagnostics and therapeutics for human pathogenic infections. Fusarinine C (FsC) is a natural hydroxamate siderophore that harbors three amino groups, which allow the easy chemical modification of FsC for the design of novel multifunctional conjugates. However, low production of FsC has hampered its extensive exploitation.Herein, we rewired the FsC biosynthetic pathway in the Aureobasidium melanogenum HN6.2 strain to achieve a self-supplying l-ornithine with component-simplified and enhanced production of extracellular siderophores, for which the FsC accounted for 94%, its final titer being approximately 1.7 g L-1. The convenient acquisition of FsC effectuated our exploitation for its application. We employed in vitro and in vivo assays to show that FsC is an active targeting molecule that acts on the human pathogenic fungi Trichophyton rubrum and Candida albicans; this demonstrates the potential to use FsC for the development of novel antifungal targeting reagents in the future.
Collapse
Affiliation(s)
- Yi Lu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Hongying Wang
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Zhuangzhuang Wang
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Ying Cong
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuan Jingsi Road, Qingdao, 266001, China
| | - Guanglei Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Zhenming Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, No.5 Yushan Road, Qingdao, 266003, China
- Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
- Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
3
|
Kurucz V, Kiss B, Szigeti ZM, Nagy G, Orosz E, Hargitai Z, Harangi S, Wiebenga A, de Vries RP, Pócsi I, Emri T. Physiological background of the remarkably high Cd 2+ tolerance of the Aspergillus fumigatus Af293 strain. J Basic Microbiol 2018; 58:957-967. [PMID: 30168857 DOI: 10.1002/jobm.201800200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
The physiological background of the unusually high cadmium tolerance (MIC50 > 2 mM) of Aspergillus fumigatus Af293 was investigated. The cadmium tolerance of the tested environmental and clinical A. fumigatus strains varied over a wide range (0.25 mM < MIC50 < 1 mM). Only the Af293 strain showed a MIC50 value of >2 mM, and this phenotype was accompanied by increased in vivo virulence in mice. A strong correlation was found between the cadmium tolerance and the transcription of the pcaA gene, which encodes a putative cadmium efflux pump. The cadmium tolerance also correlated with the iron tolerance and the extracellular siderophore production of the strains. In addition to these findings, Af293 did not show the synergism between iron toxicity and cadmium toxicity that was detected in the other strains. Based on these results, we suggest that the primary function of PcaA should be acting as a ferrous iron pump and protecting cells from iron overload. Nevertheless, the heterologous expression of pcaA may represent an attractive strain improvement strategy to construct fungal strains for use in biosorption or biomining processes or to prevent accumulation of this toxic metal in crops.
Collapse
Affiliation(s)
- Vivien Kurucz
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Beáta Kiss
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa M Szigeti
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Nagy
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Orosz
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hargitai
- Department of Pathology, Kenézy Gyula County Hospital, Debrecen, Hungary
| | - Sándor Harangi
- Department of Inorganic and Analytical Chemistry (Agilent Atomic Spectroscopy Partner Laboratory), Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Ad Wiebenga
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Farkas E, Szabó O, Gyémánt G, Szaniszló S, Szabó Z, Pócsi I. Complexation of hydroxamate-based siderophores with cobalt(II/III): growth inhibitory effect of cobalt(III)-desferricoprogen complex on fungi. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0225-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Mulvihill ED, Moloney NM, Owens RA, Dolan SK, Russell L, Doyle S. Functional Investigation of Iron-Responsive Microsomal Proteins, including MirC, in Aspergillus fumigatus. Front Microbiol 2017; 8:418. [PMID: 28367141 PMCID: PMC5355445 DOI: 10.3389/fmicb.2017.00418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
The functionality of many microsome-associated proteins which exhibit altered abundance in response to iron limitation in Aspergillus fumigatus is unknown. Here, we generate and characterize eight gene deletion strains, and of most significance reveal that MirC (AFUA_2G05730) contributes to the maintenance of intracellular siderophore [ferricrocin (FC)] levels, augments conidiation, confers protection against oxidative stress, exhibits an intracellular localization and contributes to fungal virulence in the Galleria mellonella animal model system. FC levels were unaffected following deletion of all other genes encoding microsome-associated proteins. MirC does not appear to play a role in either siderophore export from, or uptake into, A. fumigatus. Label-free quantitative proteomic analysis unexpectedly revealed increased abundance of siderophore biosynthetic enzymes. In addition, increased expression of hapX (7.2 and 13.8-fold at 48 and 72 h, respectively; p < 0.001) was observed in ΔmirC compared to wild-type under iron-replete conditions by qRT-PCR. This was complemented by significantly elevated extracellular triacetylfusarinine C (TAFC; p < 0.01) and fusarinine C (FSC; p < 0.05) siderophore secretion. We conclude that MirC plays an important role in FC biosynthesis and contributes to the maintenance of iron homeostasis in A. fumigatus.
Collapse
Affiliation(s)
| | | | | | - Stephen K Dolan
- Department of Biology, Maynooth UniversityKildare, Ireland; Department of Biochemistry, University of CambridgeCambridge, UK
| | - Lauren Russell
- Department of Biology, Maynooth University Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University Kildare, Ireland
| |
Collapse
|
6
|
Todokoro T, Fukuda K, Matsumura K, Irie M, Hata Y. Production of the natural iron chelator deferriferrichrysin from Aspergillus oryzae and evaluation as a novel food-grade antioxidant. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2998-3006. [PMID: 26399367 DOI: 10.1002/jsfa.7469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Deferriferrichrysin (Dfcy) is a siderophore found in foods fermented by Aspergillus oryzae and is a promising candidate for an antioxidant food additive because of its high binding constant toward iron. However, the Dfcy concentration is typically low in foods and cultures. RESULTS We optimised culture conditions to improve Dfcy production to 2800 mg L(-1) from 22.5 mg L(-1) under typical conditions. Then, we evaluated the potential of Dfcy as a food additive by measuring its safety, stability, and antioxidant activity. Dfcy was sufficiently stable that over 90% remained after pasteurisation at 63 °C for 30 min at pH 3-11, or after sterilisation at 120 °C for 4 min at pH 4-6. Dfcy showed high antioxidant activity in an oil-in-water model, where inhibition of lipid oxidation was measured by peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) assays. Dfcy decreased PV and TBARS by 83% and 75%, respectively. Antioxidant activity of Dfcy was equal to or higher than that of the synthetic chelator EDTA. CONCLUSION Our study provides the first practical method for production of Dfcy. Dfcy can be a novel food-grade antioxidant and the first natural alternative to the synthesised iron chelator EDTA. © 2015 Society of Chemical Industry.
Collapse
MESH Headings
- Animals
- Antioxidants/adverse effects
- Antioxidants/chemistry
- Antioxidants/economics
- Antioxidants/isolation & purification
- Aspergillus oryzae/chemistry
- Aspergillus oryzae/growth & development
- Aspergillus oryzae/metabolism
- Fermentation
- Food Preservatives/adverse effects
- Food Preservatives/chemistry
- Food Preservatives/economics
- Food Preservatives/isolation & purification
- Food-Processing Industry/economics
- Fungal Proteins/metabolism
- Hot Temperature/adverse effects
- Industrial Waste/analysis
- Industrial Waste/economics
- Iron Chelating Agents/adverse effects
- Iron Chelating Agents/chemistry
- Iron Chelating Agents/economics
- Iron Chelating Agents/isolation & purification
- Japan
- Models, Chemical
- Mutagenicity Tests
- Oryza/chemistry
- Peptide Hydrolases/metabolism
- Peptides, Cyclic/adverse effects
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/economics
- Peptides, Cyclic/isolation & purification
- Plant Proteins, Dietary/chemistry
- Plant Proteins, Dietary/economics
- Plant Proteins, Dietary/isolation & purification
- Plant Proteins, Dietary/metabolism
- Protein Hydrolysates/chemistry
- Protein Hydrolysates/economics
- Protein Hydrolysates/isolation & purification
- Protein Hydrolysates/metabolism
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Seeds/chemistry
- Toxicity Tests, Acute
- Wine/analysis
- Wine/microbiology
Collapse
Affiliation(s)
- Takehiko Todokoro
- Research Institute, Gekkeikan Sake Co., Ltd, 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Katsuharu Fukuda
- Research Institute, Gekkeikan Sake Co., Ltd, 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co., Ltd, 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Motoko Irie
- Research Institute, Gekkeikan Sake Co., Ltd, 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co., Ltd, 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| |
Collapse
|
7
|
Winkelströter LK, Dolan SK, Fernanda Dos Reis T, Bom VLP, Alves de Castro P, Hagiwara D, Alowni R, Jones GW, Doyle S, Brown NA, Goldman GH. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3 (BETHESDA, MD.) 2015; 5:1525-39. [PMID: 25943523 PMCID: PMC4502386 DOI: 10.1534/g3.115.016766] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Raneem Alowni
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil National Laboratory of Science and Technology of Bioethanol (CTBE), 13083-970 Campinas, Brazil
| |
Collapse
|