1
|
Gao Y, Xia D, You Y, Cheng Y, Bai B, Feng G, Liang X, Cheng L, Song H, Wang Y. Effects of dioscin from Dioscorea nipponica on TL1A/DR3 and Th9 cells in a collagen-induced arthritis mouse model. Int Immunopharmacol 2025; 147:114028. [PMID: 39798473 DOI: 10.1016/j.intimp.2025.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease, and TL1A and its receptor DR3 play important roles in its pathogenesis. Th9 cells are involved in RA development. Dioscin from Dioscorea nipponica (DDN) has a therapeutic effect on RA, but its effect on TL1A/DR3 and Th9 cells remains unclear. A collagen-induced arthritis (CIA) model was established in DBA/1 mice, and the therapeutic effects of DDN were determined using pathological sections and arthritis index scores. Western blotting and PCR were used to detect TL1A, DR3, PU.1, TGF-β and IRF-4. Enzyme-linked immunosorbent assay was used to detect the expression of TL1A and IL-9 in the serum. Immunofluorescence was used to detect the localization and expression of TL1A, DR3, and PU.1 in synovial tissue. Flow cytometry was used to detect TL1A and DR3 expression in different immune cells and Th9 cells. DDN ameliorated bone destruction, inflammatory cell infiltration, synovial inflammation, cartilage tissue destruction, and proteoglycan loss. DDN downregulated TL1A, DR3, and PU.1 in the synovium of the lymph nodes and spleen and TL1A and IL-9 in the serum. DDN decreased the number of TL1A-expressing APCs and macrophages, DR3-expressing CD4 + T cells, and Th9 cells. Th9 cell differentiation-related factors TGF-β and IRF-4 were also inhibited by DDN. We conclude that DNN inhibited the expression of TL1A/DR3 in CIA mice and suppressed the expression of the Th9 cell-specific transcription factor PU.1, Th9 cell number, and IL-9 secretion. DDN inhibited the function of Th9 cells by targeting TGF-β and IRF-4 in the TL1A/DR3 pathway, thereby reducing inflammation.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Mice, Inbred DBA
- Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 15/genetics
- Mice
- Dioscorea/immunology
- Diosgenin/analogs & derivatives
- Diosgenin/therapeutic use
- Diosgenin/pharmacology
- Male
- Receptors, Tumor Necrosis Factor, Member 25/metabolism
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Interleukin-9/blood
- Disease Models, Animal
- Humans
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- Anti-Inflammatory Agents/therapeutic use
- Anti-Inflammatory Agents/pharmacology
Collapse
Affiliation(s)
- Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China.
| | - Dongshuai Xia
- Central Laboratory, Clinical Laboratory Center, Affiliated Taian City Central Hospital of Qingdao University, Taian 271000 Shandong, China.
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China.
| | - Yu Cheng
- Department of Pathology, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China.
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China
| | - Guiying Feng
- Department of Humanistic Nursing, School of Nursing, Chengde Medical University, Chengde 067000 Hebei, China.
| | - Xiujun Liang
- Institute of Basic Medicine, College of Basic Medicine, Chengde Medical University, Chengde 067000 Hebei, China.
| | - Luyang Cheng
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China
| | - Hongru Song
- Department of Immunology, College of Lab Medicine, HeBei North University, Zhangjiakou 075000 Hebei, China.
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China.
| |
Collapse
|
2
|
Wyrożemski Ł, Qiao SW. Immunobiology and conflicting roles of the human CD161 receptor in T cells. Scand J Immunol 2021; 94:e13090. [PMID: 35611672 DOI: 10.1111/sji.13090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/29/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Human C-type lectin-like CD161 is a type-II transmembrane protein expressed on the surface of various lymphocytes across innate and adaptive immune systems. CD161+ T cells displayed enhanced ability to produce cytokines and were shown to be enriched in the gut. Independently of function, CD161 was used as marker of innate-like T cells and marker of IL-17-producing cells. The function of CD161 is still not fully understood. In T cells, CD161 was proposed to act as co-signalling receptor that influence T-cell receptor-dependent responses. However, conflicting studies were published demonstrating lack of agreement over the role of CD161 during T-cell activation. In this review, we outline phenotypical and functional consequences of CD161 expression in T cells. We provide critical discussion over the most pressing issues including in depth evaluation of the literature concerning CD161 putative co-signalling properties.
Collapse
Affiliation(s)
- Łukasz Wyrożemski
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Sattler A, Thiel LG, Ruhm AH, Souidi N, Seifert M, Herberth G, Kotsch K. The TL1A-DR3 Axis Selectively Drives Effector Functions in Human MAIT Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2970-2978. [PMID: 31628153 DOI: 10.4049/jimmunol.1900465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are semi-invariant T cells specifically recognizing riboflavin derivatives that are synthesized by many bacteria and fungi presented by MHC class I-related MR1 molecules. Accumulating evidence, however, indicates that MAIT cell functions are inducible by cytokine stimuli in the absence of TCR ligation, identifying MAIT cells as innate sentinels in inflammatory environments. In this study, we demonstrate that death receptor 3 (DR3), a member of the TNFR superfamily, is ex vivo expressed and predominantly upregulated on the surface of human MAIT cells by innate cytokine stimulation. In turn, the DR3 ligand TNF-like protein 1A (TL1A) licenses innate TNF-α production in the absence of cognate triggers, being sufficient to promote activation of primary endothelial cells in vitro. TL1A further amplifies synthesis of IFN-γ and granzyme B in the presence of otherwise weak innate stimuli and strongly augments polyfunctionality. Mechanistically, TL1A potentiates T-bet expression, early NF-κB, and late p38 MAP kinase phosphorylation, with the latter being indispensable for TNF-α production by MAIT cells. Of note, endogenous TL1A is also rapidly released from PBMC cultures in response to bacterial triggering, thereby equally augmenting Ag-specific MAIT cell effector functions. In summary, to our knowledge, we identify a new inflammatory mechanism in MAIT cells linking the DR3/TL1A axis with amplification of TCR-dependent and -independent effector functions, particularly inducing excessive innate TNF-α production. Given that both TL1A and TNF-α are abundantly present at sites of chronic inflammation, the contribution of MAIT cells in such scenarios needs to be determined.
Collapse
Affiliation(s)
- Arne Sattler
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany;
| | - Lion Gabriel Thiel
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Annkathrin Helena Ruhm
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Naima Souidi
- BIH Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 10178 Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; and
| | - Martina Seifert
- BIH Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 10178 Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; and
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Katja Kotsch
- Department for General, Visceral and Vascular Surgery, Charité University Medicine Berlin, 12200 Berlin, Germany
| |
Collapse
|
4
|
Leng T, Akther HD, Hackstein CP, Powell K, King T, Friedrich M, Christoforidou Z, McCuaig S, Neyazi M, Arancibia-Cárcamo CV, Hagel J, Powrie F, Peres RS, Millar V, Ebner D, Lamichhane R, Ussher J, Hinks TSC, Marchi E, Willberg C, Klenerman P. TCR and Inflammatory Signals Tune Human MAIT Cells to Exert Specific Tissue Repair and Effector Functions. Cell Rep 2019; 28:3077-3091.e5. [PMID: 31533032 PMCID: PMC6899450 DOI: 10.1016/j.celrep.2019.08.050] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/17/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.
Collapse
Affiliation(s)
- Tianqi Leng
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Kate Powell
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Department of Microbiology and Immunology, University of Otago, Otago, New Zealand
| | - Thomas King
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Matthias Friedrich
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | - Zoe Christoforidou
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah McCuaig
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | - Mastura Neyazi
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | | | - Joachim Hagel
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Fiona Powrie
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | | | - Val Millar
- Target Discovery Institute, Roosevelt Dr., Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Target Discovery Institute, Roosevelt Dr., Oxford OX3 7FZ, UK
| | - Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Otago, New Zealand
| | - James Ussher
- Department of Microbiology and Immunology, University of Otago, Otago, New Zealand
| | - Timothy S C Hinks
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK; Respiratory Medicine Unit, Nuffield Department of Medicine Experimental Medicine, University of Oxford, Oxford OX3 9DU, UK; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Chris Willberg
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
5
|
Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, Duurland CL, van Unen V, Höllt T, van der Velden LA, van Egmond SL, Kortekaas KE, de Vos van Steenwijk PJ, van Poelgeest MIE, Welters MJP, van der Burg SH. The Anatomical Location Shapes the Immune Infiltrate in Tumors of Same Etiology and Affects Survival. Clin Cancer Res 2018; 25:240-252. [PMID: 30224343 DOI: 10.1158/1078-0432.ccr-18-1749] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The tumor immune microenvironment determines clinical outcome. Whether the original tissue in which a primary tumor develops influences this microenvironment is not well understood. EXPERIMENTAL DESIGN We applied high-dimensional single-cell mass cytometry [Cytometry by Time-Of-Flight (CyTOF)] analysis and functional studies to analyze immune cell populations in human papillomavirus (HPV)-induced primary tumors of the cervix (cervical carcinoma) and oropharynx (oropharyngeal squamous cell carcinoma, OPSCC). RESULTS Despite the same etiology of these tumors, the composition and functionality of their lymphocytic infiltrate substantially differed. Cervical carcinoma displayed a 3-fold lower CD4:CD8 ratio and contained more activated CD8+CD103+CD161+ effector T cells and less CD4+CD161+ effector memory T cells than OPSCC. CD161+ effector cells produced the highest cytokine levels among tumor-specific T cells. Differences in CD4+ T-cell infiltration between cervical carcinoma and OPSCC were reflected in the detection rate of intratumoral HPV-specific CD4+ T cells and in their impact on OPSCC and cervical carcinoma survival. The peripheral blood mononuclear cell composition of these patients, however, was similar. CONCLUSIONS The tissue of origin significantly affects the overall shape of the immune infiltrate in primary tumors.
Collapse
Affiliation(s)
- Saskia J Santegoets
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vanessa J van Ham
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Chantal L Duurland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Höllt
- Department of Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands.,Computer Graphics and Visualization Group, Delft University of Technology, Delft, the Netherlands
| | - Lilly-Ann van der Velden
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sylvia L van Egmond
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Kim E Kortekaas
- Department of Gynaecology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Bittner S, Ehrenschwender M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Lett 2017; 591:2543-2555. [DOI: 10.1002/1873-3468.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg; Germany
| |
Collapse
|
7
|
Tougaard P, Zervides KA, Skov S, Hansen AK, Pedersen AE. Biologics beyond TNF-αinhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders. Immunopharmacol Immunotoxicol 2016; 38:29-38. [DOI: 10.3109/08923973.2015.1130721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Siakavellas SI, Bamias G. Tumor Necrosis Factor-like Cytokine TL1A and Its Receptors DR3 and DcR3: Important New Factors in Mucosal Homeostasis and Inflammation. Inflamm Bowel Dis 2015; 21:2441-2452. [PMID: 26099067 DOI: 10.1097/mib.0000000000000492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF)-like cytokine 1A (TL1A) is a member of the TNF superfamily of proteins (TNFSF15), which signals through association with death domain receptor 3 (DR3). Decoy receptor 3 (DcR3) competes with DR3 for TL1A binding and inhibits functional signaling. These proteins are significantly upregulated in inflamed intestinal tissues, and their pathogenetic importance for inflammatory bowel disease (IBD) is suggested by accumulating evidence. TL1A/DR3 induce costimulatory signals to activated lymphocytes, including the gut-specific populations of CD4+CD161+ and CD4+CCR9+ cells, affecting all major effector pathways and inducing the mucosal upregulation of Th1, Th2, and Th17 factors. They may also participate in mucosal homeostasis and defense against pathogens through their effects on the development and function of the recently described innate lymphoid cells. T-regulatory lymphocytes highly express DR3, and they respond to TL1A stimulation also. Mechanistic studies by transgenic expression of TL1A, deletion of TL1A or DR3, and therapeutic blockade by anti-TL1A antibodies all support the critical involvement of the corresponding pathways in the pathogenesis of chronic mucosal inflammation. Wide genome association studies have identified IBD-specific polymorphisms in TNFSF15 gene, which have functional implications and serve as poor prognostic factors. Recently, TL1A blockade in mice was presented as a unique pharmacological treatment for the reversal of established intestinal fibrosis. Finally, TL1A/DR3 signaling seems to critically participate in extraintestinal inflammatory conditions that are frequently associated with IBD as part of the gut-joint-skin-eye axis. These converging lines of evidence make TL1A/DR3 a suitable model for personalized approaches to IBD therapy.
Collapse
Affiliation(s)
- Spyros I Siakavellas
- Laikon Hospital, Academic Department of Gastroenterology, Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
9
|
Ślebioda TJ, Bojarska-Junak A, Stanisławowski M, Cyman M, Wierzbicki PM, Roliński J, Celiński K, Kmieć Z. TL1A as a Potential Local Inducer of IL17A Expression in Colon Mucosa of Inflammatory Bowel Disease Patients. Scand J Immunol 2015; 82:352-60. [PMID: 26072972 DOI: 10.1111/sji.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Affiliation(s)
- T. J. Ślebioda
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - A. Bojarska-Junak
- Department of Clinical Immunology; Medical University of Lublin; Lublin Poland
| | - M. Stanisławowski
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - M. Cyman
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - P. M. Wierzbicki
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| | - J. Roliński
- Department of Clinical Immunology; Medical University of Lublin; Lublin Poland
| | - K. Celiński
- Department of Gastroenterology with Endoscopic Unit; Medical University of Lublin; Lublin Poland
| | - Z. Kmieć
- Department of Histology; Medical University of Gdańsk; Gdańsk Poland
| |
Collapse
|
10
|
Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 2015; 98:333-45. [PMID: 26188076 PMCID: PMC4763597 DOI: 10.1189/jlb.3ri0315-095r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Originally described in 2002 as a T cell-costimulatory cytokine, the tumor necrosis factor family member TNF-like factor 1A (TL1A), encoded by the TNFSF15 gene, has since been found to affect multiple cell lineages through its receptor, death receptor 3 (DR3, encoded by TNFRSF25) with distinct cell-type effects. Genetic deficiency or blockade of TL1A-DR3 has defined a number of disease states that depend on this cytokine-receptor pair, whereas excess TL1A leads to allergic gastrointestinal inflammation through stimulation of group 2 innate lymphoid cells. Noncoding variants in the TL1A locus are associated with susceptibility to inflammatory bowel disease and leprosy, predicting that the level of TL1A expression may influence host defense and the development of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Arianne C Richard
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John R Ferdinand
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Françoise Meylan
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Erika T Hayes
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Odile Gabay
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Richard M Siegel
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Holmkvist P, Roepstorff K, Uronen-Hansson H, Sandén C, Gudjonsson S, Patschan O, Grip O, Marsal J, Schmidtchen A, Hornum L, Erjefält JS, Håkansson K, Agace WW. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality. Mucosal Immunol 2015; 8:545-58. [PMID: 25269704 PMCID: PMC4424383 DOI: 10.1038/mi.2014.87] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/18/2014] [Indexed: 02/04/2023]
Abstract
Mucosal tissues contain large numbers of memory CD4(+) T cells that, through T-cell receptor-dependent interactions with antigen-presenting cells, are believed to have a key role in barrier defense and maintenance of tissue integrity. Here we identify a major subset of memory CD4(+) T cells at barrier surfaces that coexpress interleukin-18 receptor alpha (IL-18Rα) and death receptor-3 (DR3), and display innate lymphocyte functionality. The cytokines IL-15 or the DR3 ligand tumor necrosis factor (TNF)-like cytokine 1A (TL1a) induced memory IL-18Rα(+)DR3(+)CD4(+) T cells to produce interferon-γ, TNF-α, IL-6, IL-5, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-22 in the presence of IL-12/IL-18. TL1a synergized with IL-15 to enhance this response, while suppressing IL-15-induced IL-10 production. TL1a- and IL-15-mediated cytokine induction required the presence of IL-18, whereas induction of IL-5, IL-13, GM-CSF, and IL-22 was IL-12 independent. IL-18Rα(+)DR3(+)CD4(+) T cells with similar functionality were present in human skin, nasal polyps, and, in particular, the intestine, where in chronic inflammation they localized with IL-18-producing cells in lymphoid aggregates. Collectively, these results suggest that human memory IL-18Rα(+)DR3(+) CD4(+) T cells may contribute to antigen-independent innate responses at barrier surfaces.
Collapse
Affiliation(s)
- P Holmkvist
- Immunology Section, Lund University, Lund, Sweden
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - K Roepstorff
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | | | - C Sandén
- Unit of Airway Inflammation and Immunology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - S Gudjonsson
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - O Patschan
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - O Grip
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - J Marsal
- Department of Gastroenterology, Skåne University Hospital, Lund, Sweden
| | - A Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - L Hornum
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - J S Erjefält
- Unit of Airway Inflammation and Immunology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - K Håkansson
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - W W Agace
- Immunology Section, Lund University, Lund, Sweden
- Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| |
Collapse
|
12
|
Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2014; 2014:325129. [PMID: 25045210 PMCID: PMC4087264 DOI: 10.1155/2014/325129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract of unclear aetiology of which two major forms are Crohn's disease (CD) and ulcerative colitis (UC). CD and UC are immunologically distinct, although they both result from hyperactivation of proinflammatory pathways in intestines and disruption of intestinal epithelial barrier. Members of the tumour necrosis factor superfamily (TNFSF) are molecules of broad spectrum of activity, including direct disruption of intestinal epithelial barrier integrity and costimulation of proinflammatory functions of lymphocytes. Tumour necrosis factor (TNF) has a well-established pathological role in IBD which also serves as a target in IBD treatment. In this review we discuss the role of TNF and other TNFSF members, notably, TL1A, FasL, LIGHT, TRAIL, and TWEAK, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Tomasz J. Ślebioda
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
13
|
Lee SH, Lillehoj HS, Jeong M, Del Cacho E, Min W, Sullivan YB, Kakach L, LaBresh JW, Kim HR. Development and characterization of mouse monoclonal antibodies reactive with chicken TL1A. Vet Immunol Immunopathol 2014; 159:103-9. [DOI: 10.1016/j.vetimm.2014.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
|
14
|
Bamias G, Jia LG, Cominelli F. The tumor necrosis factor-like cytokine 1A/death receptor 3 cytokine system in intestinal inflammation. Curr Opin Gastroenterol 2013; 29:597-602. [PMID: 24100723 DOI: 10.1097/mog.0b013e328365d3a2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Tumor necrosis factor (TNF)-like cytokine 1A (TL1A) associates with the death receptor 3 (DR3) on activated lymphocytes and induces proinflammatory signals. The decoy receptor 3 (DcR3) competes for TL1A binding and inhibits functional signaling. This review focuses on the role of the TL1A/DR3/DcR3 cytokine system in inflammatory bowel diseases (IBDs). RECENT FINDINGS TL1A may induce IFN-γ-mediated and IL-17-mediated proinflammatory pathways in IBDs by acting on DR3-expressing, CD4(+)CD161(+) lymphocytes, which are substantially enriched at the inflamed intestinal mucosa. In addition, TL1A/DR3 signaling results in expansion of the Treg pool with concomitant and transient inhibition of their suppressive function. Constitutive expression of TL1A in transgenic mice was associated with small intestinal inflammation, which was accompanied by colonic fibrosis both spontaneously and under colitogenic conditions. Recent human studies demonstrated that soluble TL1A and DcR3 are present in the systemic circulation in patients with active IBD and decline after successful anti-inflammatory treatment. SUMMARY TL1A/DR3 interactions may participate in the pathogenesis of chronic intestinal inflammation and offer novel therapeutic targets for patients with ulcerative colitis and Crohn's disease.
Collapse
Affiliation(s)
- Giorgos Bamias
- aAcademic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece bDivision of Gastrointestinal and Liver Disease, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | | | |
Collapse
|
15
|
Zheng L, Zhang X, Chen J, Ichikawa R, Wallace K, Pothoulakis C, Koon HW, Targan SR, Shih DQ. SUSTAINED TL1A (TNFSF15) EXPRESSION ON BOTH LYMPHOID AND MYELOID CELLS LEADS TO MILD SPONTANEOUS INTESTINAL INFLAMMATION AND FIBROSIS. Eur J Microbiol Immunol (Bp) 2013; 3:11-20. [PMID: 23638306 DOI: 10.1556/eujmi.3.2013.1.2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TL1A is a member of the TNF superfamily, and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, patients with certain TNFSF15 variants over-express TL1A and have a higher risk of developing strictures in the small intestine. Consistently, mice with sustained Tl1a expression in either lymphoid or myeloid cells develop spontaneous ileitis and increased intestinal collagen deposition. Transgenic (Tg) mice with constitutive Tl1a expression in both lymphoid and myeloid cells were generated to assess their in vivo consequence. Constitutive expression of Tl1a in both lymphoid and myeloid cells showed increased spontaneous ileitis and collagen deposition than WT mice. T cells with constitutive expression of Tl1a in both lymphoid and myeloid cells were found to have a more activated phenotype, increased gut homing marker CCR9 expression, and enhanced Th1 and Th17 cytokine activity than WT mice. Although no differences in T cell activation marker, Th1 or Th17 cytokine activity, ileitis, or collagen deposition were found between constitutive Tl1a expression in lymphoid only, myeloid only, or combined lymphoid and myeloid cells. Double hemizygous Tl1a-Tg mice appeared to have worsened ileitis and intestinal fibrosis. Our findings confirm that TL1A-DR3 interaction is involved in T cell-dependent ileitis and fibrosis.
Collapse
Affiliation(s)
- Libo Zheng
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Iwaya H, Lee JS, Yamagishi S, Shinoki A, Lang W, Thawornkuno C, Kang HK, Kumagai Y, Suzuki S, Kitamura S, Hara H, Okuyama M, Mori H, Kimura A, Ishizuka S. The delay in the development of experimental colitis from isomaltosyloligosaccharides in rats is dependent on the degree of polymerization. PLoS One 2012; 7:e50658. [PMID: 23209802 PMCID: PMC3510184 DOI: 10.1371/journal.pone.0050658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 10/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background Isomaltosyloligosaccharides (IMO) and dextran (Dex) are hardly digestible in the small intestine and thus influence the luminal environment and affect the maintenance of health. There is wide variation in the degree of polymerization (DP) in Dex and IMO (short-sized IMO, S-IMO; long-sized IMO, L-IMO), and the physiological influence of these compounds may be dependent on their DP. Methodology/Principal Findings Five-week-old male Wistar rats were given a semi-purified diet with or without 30 g/kg diet of the S-IMO (DP = 3.3), L-IMO (DP = 8.4), or Dex (DP = 1230) for two weeks. Dextran sulfate sodium (DSS) was administered to the rats for one week to induce experimental colitis. We evaluated the clinical symptoms during the DSS treatment period by scoring the body weight loss, stool consistency, and rectal bleeding. The development of colitis induced by DSS was delayed in the rats fed S-IMO and Dex diets. The DSS treatment promoted an accumulation of neutrophils in the colonic mucosa in the rats fed the control, S-IMO, and L-IMO diets, as assessed by a measurement of myeloperoxidase (MPO) activity. In contrast, no increase in MPO activity was observed in the Dex-diet-fed rats even with DSS treatment. Immune cell populations in peripheral blood were also modified by the DP of ingested saccharides. Dietary S-IMO increased the concentration of n-butyric acid in the cecal contents and the levels of glucagon-like peptide-2 in the colonic mucosa. Conclusion/Significance Our study provided evidence that the physiological effects of α-glucosaccharides on colitis depend on their DP, linkage type, and digestibility.
Collapse
Affiliation(s)
- Hitoshi Iwaya
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jae-Sung Lee
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinya Yamagishi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Aki Shinoki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Hee-Kwon Kang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuya Kumagai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shiho Suzuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shinichi Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
17
|
TNFSF15 Modulates Neovascularization and Inflammation. CANCER MICROENVIRONMENT 2012; 5:237-47. [PMID: 22833050 DOI: 10.1007/s12307-012-0117-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor superfamily-15 (TNFSF15; also known as VEGI or TL1A) is a unique cytokine that functions in the modulation of vascular homeostasis and inflammation. TNFSF15 is expressed abundantly in established vasculature but is down-regulated at sites of neovascularization such as in cancers and wounds. TNFSF15 inhibits endothelial cell proliferation and endothelial progenitor cell differentiation. Additionally, TNFSF15 stimulates T cell activation, Th1 cytokine production, and dendritic cell maturation. Some of the functions of TNFSF15 are mediated by death receptor-3. We review the experimental evidences on TNFSF15 activities in angiogenesis, vasculogenesis, inflammation, and immune system mobilization.
Collapse
|