1
|
Gunas V, Maievskyi O, Raksha N, Vovk T, Savchuk O, Shchypanskyi S, Gunas I. Protein and peptide profiles of rats' organs in scorpion envenomation. Toxicol Rep 2023; 10:615-620. [PMID: 37234066 PMCID: PMC10208795 DOI: 10.1016/j.toxrep.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Problem of scorpion envenomation becomes more alarming each year. Main effects of scorpion venom are commonly believed to be related to its neurotoxic properties, yet severe symptoms may also be developed due to the uncontrolled enzymatic activity and formation of various bioactive molecules, including middle-mass molecules (MMMs). MMMs are considered as endogenous intoxication markers, their presence may indicate multiple organ failure. Scorpions, belong to the Leiurus macroctenus species, are very dangerous, nevertheless, effects of their venom on protein and peptide composition within the tissues remains unclear. In this work we have focused the attention on changes in protein and MMM levels and peptide composition in various organs during Leiurus macroctenus envenomation. The results revealed a decrease in protein level during envenomation as well as a significant increment of MMM210 and MMM254 levels in all assessed organs. Quantitative and qualitative compositions of various protein and peptide factions were continually changing. All of this may suggest that Leiurus macroctenus sting causes considerable destruction of cell microenvironment across all essential organs, providing systemic envenomation. In addition, MMM level increment may indicate endogenous intoxication development. Peptides, formed during envenomation, may possess various bioactive properties, analysis of which constitutes an area of further studies.
Collapse
Affiliation(s)
- Valery Gunas
- Department of Forensic Medicine and Law, National Pirogov Memorial Medical University, Pyrohova Street, 56, Vinnytsia 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Nataliia Raksha
- Department of Biochemistry, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Tetiana Vovk
- Department of Clinical Medicine, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Oleksiy Savchuk
- Department of Forensic Medicine and Law, National Pirogov Memorial Medical University, Pyrohova Street, 56, Vinnytsia 21018, Ukraine
| | - Serhii Shchypanskyi
- Department of Biochemistry, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Igor Gunas
- Department of Human anatomy, National Pirogov Memorial Medical University, Pyrohova Street, 56, Vinnytsia 21018, Ukraine
| |
Collapse
|
2
|
Shcherbakov AB, Reukov VV, Yakimansky AV, Krasnopeeva EL, Ivanova OS, Popov AL, Ivanov VK. CeO 2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers (Basel) 2021; 13:924. [PMID: 33802821 PMCID: PMC8002506 DOI: 10.3390/polym13060924] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?
Collapse
Affiliation(s)
- Alexander B. Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Vladimir V. Reukov
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA;
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (A.V.Y.); (E.L.K.)
| | - Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (A.V.Y.); (E.L.K.)
| | - Olga S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
| | - Anton L. Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
| |
Collapse
|