1
|
Bugiardini E, Nunes AM, Oliveira‐Santos A, Dagda M, Fontelonga TM, Barraza‐Flores P, Pittman AM, Morrow JM, Parton M, Houlden H, Elliott PM, Syrris P, Maas RP, Akhtar MM, Küsters B, Raaphorst J, Schouten M, Kamsteeg E, van Engelen B, Hanna MG, Phadke R, Lopes LR, Matthews E, Burkin DJ. Integrin α7 Mutations Are Associated With Adult-Onset Cardiac Dysfunction in Humans and Mice. J Am Heart Assoc 2022; 11:e026494. [PMID: 36444867 PMCID: PMC9851448 DOI: 10.1161/jaha.122.026494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Background Integrin α7β1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7β1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7β1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7β1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy.
Collapse
Affiliation(s)
- Enrico Bugiardini
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Andreia M. Nunes
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Ariany Oliveira‐Santos
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Marisela Dagda
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Tatiana M. Fontelonga
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Pamela Barraza‐Flores
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| | - Alan M. Pittman
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- St George’sUniversity of LondonLondonUnited Kingdom
| | - Jasper M. Morrow
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Matthew Parton
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Perry M. Elliott
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Petros Syrris
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Roderick P. Maas
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Mohammed M. Akhtar
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Benno Küsters
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost Raaphorst
- Department of Neurology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Meyke Schouten
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michael G. Hanna
- Queen Square Centre for Neuromuscular DiseasesQueen Square Institute of Neurology, UCL and National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Rahul Phadke
- Division of NeuropathologyUCL Institute of NeurologyLondonUnited Kingdom
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular DiseasesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Luis R. Lopes
- Barts Heart Centre, Barts Health NHS TrustLondonUnited Kingdom
- Centre for Heart Muscle DiseaseInstitute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Emma Matthews
- The Atkinson Morley Neuromuscular Centre and Regional Neurosciences CentreSt George’s University Hospitals NHS Foundation TrustLondonUnited Kingdom
- Molecular and Clinical Sciences Research Institute, St George’s University of LondonLondonUnited Kingdom
| | - Dean J. Burkin
- Department of PharmacologyUniversity of Nevada Reno, School of Medicine, Center for Molecular MedicineRenoNV
| |
Collapse
|
2
|
Oliveira-Santos A, Dagda M, Burkin DJ. Sunitinib inhibits STAT3 phosphorylation in cardiac muscle and prevents cardiomyopathy in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2022; 31:2358-2369. [PMID: 35157045 PMCID: PMC9307308 DOI: 10.1093/hmg/ddac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disorder affecting approximately 1 in 5000 male births worldwide. DMD is caused by mutations in the dystrophin gene. Dystrophin is essential for maintaining muscle cell membrane integrity and stability by linking the cytoskeleton to the extracellular matrix, which protects myofibers from contraction-induced damage. Loss of dystrophin leads to mechanically induced skeletal and cardiac muscle damage. Although the disease is not evident in DMD patients at birth, muscular dystrophy rapidly progresses and results in respiratory and cardiac muscle failure as early as the teenage years. Premature death in DMD patients is due to cardiac arrhythmias and left ventricular dysfunction. Currently, there is no effective treatment for DMD-related cardiac failure. Recently, we have shown that a Food and Drug Administration-approved small molecule, sunitinib, a multi-targeted tyrosine kinase inhibitor can mitigate skeletal muscle disease through an increase in myogenic capacity, cell membrane integrity, and improvement of skeletal muscle function via regulation of STAT3-related signaling pathway. Chronic activation of STAT3 has been shown to promote cardiac hypertrophy and failure. In this study, we examined the effects of long-term sunitinib treatment on cardiac pathology and function. Our results showed sunitinib treatment reduced STAT3 phosphorylation in the heart muscle of mdx mice, improved cardiac electrical function, increased cardiac output and stroke volume, decreased ventricular hypertrophy, reduced cardiomyocytes membrane damage, fibrotic tissue deposition and slightly decreased cardiac inflammation. Together, our studies support the idea that sunitinib could serve as a novel treatment to slow cardiomyopathy progression in DMD. One Sentence Summary In this study, we determined if sunitinib, a Food and Drug Administration-approved drug, could reduce the pathology and improve cardiac function in an animal model for DMD.
Collapse
Affiliation(s)
- Ariany Oliveira-Santos
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno NV 89557, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno NV 89557, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno NV 89557, USA
| |
Collapse
|
3
|
Bergenin from Bergenia Species Produces a Protective Response against Myocardial Infarction in Rats. Processes (Basel) 2022. [DOI: 10.3390/pr10071403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bergenin is a phenolic glycoside that has been reported to occur naturally in several plant species, reported as a cardioprotective. However, bergenin, one of the important phytochemicals in these plants, is still not reported as a cardioprotective. The present study was designed to investigate the cardioprotective effects of bergenin on isoproterenol-induced myocardial infarction in rats. Bergenin and atenolol were administered through intraperitoneal (i.p.) injection to Sprague Dawley (SD) rats in separate experiments for five (5) days. At the end of this period, rats were administered isoproterenol (80 mg/kg s.c.) to induce myocardial injury. After induction, rats were anaesthetized to record lead II ECG, then sacrificed, blood was collected to analyze cardiac marker enzymes, and a histopathological study of the heart tissues was also performed. Pretreatment with bergenin showed a significant decrease in ST-segment elevation, deep Q-wave, infarct size, and also normalized cardiac marker enzymes (cTnI, CPK, CK-MB, LDH, ALT, and AST), particularly at 3 mg/kg, as compared to isoproterenol treated group. Our findings revealed, for the first time, the use of glycoside bergenin as a potential cardioprotective agent against the isoproterenol-induced MI in rats.
Collapse
|
4
|
Rial MS, Arrúa EC, Natale MA, Bua J, Esteva MI, Prado NG, Laucella SA, Salomon CJ, Fichera LE. Efficacy of continuous versus intermittent administration of nanoformulated benznidazole during the chronic phase of Trypanosoma cruzi Nicaragua infection in mice. J Antimicrob Chemother 2020; 75:1906-1916. [DOI: 10.1093/jac/dkaa101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Benznidazole and nifurtimox are effective drugs used to treat Chagas’ disease; however, their administration in patients in the chronic phase of the disease is still limited, mainly due to their limited efficacy in the later chronic stage of the disease and to the adverse effects related to these drugs.
Objectives
To evaluate the effect of low doses of nanoformulated benznidazole using a chronic model of Trypanosoma cruzi Nicaragua infection in C57BL/6J mice.
Methods
Nanoformulations were administered in two different schemes: one daily dose for 30 days or one dose every 7 days, 13 times.
Results
Both treatment schemes showed promising outcomes, such as the elimination of parasitaemia, a reduction in the levels of T. cruzi-specific antibodies and a reduction in T. cruzi-specific IFN-γ-producing cells, as well as an improvement in electrocardiographic alterations and a reduction in inflammation and fibrosis in the heart compared with untreated T. cruzi-infected animals. These results were also compared with those from our previous work on benznidazole administration, which was shown to be effective in the same chronic model.
Conclusions
In this experimental model, intermittently administered benznidazole nanoformulations were as effective as those administered continuously; however, the total dose administered in the intermittent scheme was lower, indicating a promising therapeutic approach to Chagas’ disease.
Collapse
Affiliation(s)
- M S Rial
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - E C Arrúa
- Area Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - M A Natale
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J Bua
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M I Esteva
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - N G Prado
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - S A Laucella
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - C J Salomon
- Area Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - L E Fichera
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Arul Joseph Raj NB, Selvaraj S, Jebaseelan J, Motarwar AA, Rathinavel Andiappan GP, Selvam GS. Intramuscular Immunization of Streptococcus pyogenes SF370 protein extract and identification of multiple virulence factors through proteomic profiling in RHD induced Balb/c mice. Microb Pathog 2020; 140:103888. [DOI: 10.1016/j.micpath.2019.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/15/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022]
|
6
|
Nam JM, Lim JE, Ha TW, Oh B, Kang JO. Cardiac-specific inactivation of Prdm16 effects cardiac conduction abnormalities and cardiomyopathy-associated phenotypes. Am J Physiol Heart Circ Physiol 2020; 318:H764-H777. [PMID: 32083975 DOI: 10.1152/ajpheart.00647.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variant in the PRDM16 locus has been correlated with QRS duration in an electrocardiogram genome-wide association study, and the deletion of PRDM16 has been implicated as a causal factor of the dilated cardiomyopathy that is linked to 1p36 deletion syndrome. We aimed to determine how a null mutation of Prdm16 affects cardiac function and study the underlying mechanism of the resulting phenotype in an appropriate mouse model. We used cardiac-specific Prdm16 conditional knockout mice to examine cardiac function by electrocardiography. QRS duration and QTc interval increased significantly in cardiac-specific Prdm16 knockout animals compared with wild-type mice. Further, we assessed cardiomyopathy-associated features by trichrome staining, densitometry, and hydroxyproline assay. Prdm16-null hearts showed greater fibrosis and cardiomyocyte hypertrophy. By quantitative real-time PCR, Prdm16-null hearts upregulated extracellular matrix-related genes (Ctgf, Timp1) and α-smooth muscle actin (Acta2), a myofibroblast marker. Moreover, TGF-β signaling was activated in Prdm16-null hearts, as evidenced by increased Tgfb1-3 transcript levels and phosphorylated Smad2. However, the inhibition of TGF-β receptor did not reverse the aberrations in conduction in cardiac-specific Prdm16 knockout mice. To determine the underlying mechanisms, we performed RNA-seq using mouse left ventricular tissue. By functional analysis, Prdm16-null hearts experienced dysregulated expression of ion channel genes, including Kcne1, Scn5a, Cacna1h, and Cacna2d2. Mice with Prdm16-null hearts develop abnormalities in cardiac conduction and cardiomyopathy-associated phenotypes, including fibrosis and cellular hypertrophy. Further, the RNA-seq findings suggest that impairments in ion homeostasis (Ca2+, K+, and Na+) may at least partially underlie the abnormal conduction in cardiac-specific Prdm16 knockout mice.NEW & NOTEWORTHY This is the first study that describes aberrant cardiac function and cardiomyopathy-associated phenotypes in an appropriate murine genetic model with cardiomyocyte-specific Prdm16-null mutation. It is noteworthy that the correlation of PRDM16 with QRS duration is replicated in a murine animal model and the potential underlying mechanism may be the impairment of ion homeostasis.
Collapse
Affiliation(s)
- Jeong Min Nam
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Woong Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|