1
|
Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-20. [PMID: 30182580 PMCID: PMC8357196 DOI: 10.1117/1.jbo.23.9.091415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics.
Collapse
Affiliation(s)
- Lydia Sauer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Chantal Dysli
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Martin S. Zinkernagel
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Paul S. Bernstein
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Martin Hammer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Jena, Center for Biomedical Optics and Photonics, Jena, Germany
- Address all correspondence to: Martin Hammer, E-mail:
| |
Collapse
|
2
|
Capolupo M, Franzellitti S, Kiwan A, Valbonesi P, Dinelli E, Pignotti E, Birke M, Fabbri E. A comprehensive evaluation of the environmental quality of a coastal lagoon (Ravenna, Italy): Integrating chemical and physiological analyses in mussels as a biomonitoring strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:146-159. [PMID: 28441593 DOI: 10.1016/j.scitotenv.2017.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
This study aimed at evaluating the environmental quality of a coastal lagoon (Pialassa Piomboni, NW-Adriatic, Italy) by combining analyses of biomarkers of environmental stress and bioaccumulation of contaminants in marine mussels (Mytilus galloprovincialis) transplanted for 28days to six selected sites. Assessed biomarkers encompassed lysosomal endpoints, oxidative stress and detoxification parameters, specific responses to metals, neuro- and genotoxic substances; chemical analyses focused on PAHs, metals, pesticide and pharmaceuticals. Results showed up to a 67-fold bioaccumulation of 4- to 6-ring PAHs, including pyrene, fluoranthene, chrysene and benzo(ghi)perylene in transplanted mussels compared to reference conditions (T0). A 10-fold increase of Fe, Cr and Mn was observed, while pesticides and pharmaceuticals were not or slightly detected. The onset of a significant (p<0.05) general stress syndrome occurred in exposed mussels, as outlined by a 50-57.7% decrease in haemocytes lysosomal membrane stability and an increased lysosomal volume (22.6-26.9%) and neutral lipid storage (18.9-48.8%) observed in digestive gland. Data also revealed a diffuse lipofuscin accumulation (86.5-139.3%; p<0.05) in digestive gland, occasionally associated to a catalase activity inhibition in gill, indicating an increased vulnerability toward pro-oxidant factors. Higher levels of primary DNA damage (258%; p<0.05) and PAH accumulation were found in mussels exposed along the eastern shoreline, hosting a petrochemical settlement. Bioaccumulated metals showed a positive correlation with increased metallothionein content (85-208%; p<0.05) observed in mussels from most sites. Overall, the use of physiological and chemical analyses detected chronic alterations of the mussel health status induced by specific toxicological pathways, proving a suitable approach in the framework of biomonitoring programs of coastal lagoons.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy.
| | - Silvia Franzellitti
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Alisar Kiwan
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Paola Valbonesi
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Enrico Dinelli
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Emanuela Pignotti
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| | - Manfred Birke
- Federal Institute for Geosciences and Natural Resources (BGR), Stillweg, 2, 30655 Hannover, Germany
| | - Elena Fabbri
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, P.zza S. Donato 1, 40100 Bologna, Italy
| |
Collapse
|
3
|
Peregrim I. Why we age — a new evolutionary view. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Bhattacharjee U, Graham C, Czub S, Dudas S, Rasmussen MA, Casey TA, Petrich JW. Fluorescence Spectroscopy of the Retina for the Screening of Bovine Spongiform Encephalopathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:320-325. [PMID: 26623498 DOI: 10.1021/acs.jafc.5b04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle. The distinct intensity difference of about 4-10-fold between the spectra of the BSE-positive and the BSE-negative (sham-inoculated and non-inoculated) eyes suggests the basis for a means of developing a rapid, noninvasive examination of BSE in particular and TSEs in general.
Collapse
Affiliation(s)
- Ujjal Bhattacharjee
- Department of Chemistry, Iowa State University , Ames, Iowa, United States
- U.S. Department of Energy Ames Laboratory , Ames, Iowa, United States
| | - Catherine Graham
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory , Lethbridge, Alberta, Canada
| | - Stefanie Czub
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory , Lethbridge, Alberta, Canada
| | - Sandor Dudas
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory , Lethbridge, Alberta, Canada
| | - Mark A Rasmussen
- Leopold Center, Iowa State University , Ames, Iowa, United States
| | - Thomas A Casey
- Department of Chemistry, Iowa State University , Ames, Iowa, United States
| | - Jacob W Petrich
- Department of Chemistry, Iowa State University , Ames, Iowa, United States
- U.S. Department of Energy Ames Laboratory , Ames, Iowa, United States
| |
Collapse
|
5
|
Flies, worms and the Free Radical Theory of ageing. Ageing Res Rev 2013; 12:404-12. [PMID: 22504404 DOI: 10.1016/j.arr.2012.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/26/2012] [Accepted: 03/29/2012] [Indexed: 11/22/2022]
Abstract
Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the Free Radical Theory of ageing, however the evidence has not been unequivocally supportive. Oxidative damage to DNA is probably not a major contributor, damage to lipids is assuming greater importance and damage to proteins probably the source of pathology. On balance the evidence does not support a primary role of oxidative damage in ageing in C. elegans, perhaps because of its particular energy metabolic and stress resistance profile. Evidence is more numerous, varied and consistent and hence more compelling for Drosophila, although not conclusive. However there is good evidence for a role of oxidative damage in later life pathology. Future work should: 1/ make more use of protein oxidative damage measurements; 2/ use inducible transgenic systems or pharmacotherapy to ensure genetic equivalence of controls and avoid confounding effects during development; 3/ to try to delay ageing, target interventions which reduce and/or repair protein oxidative damage.
Collapse
|
6
|
Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 2011; 31:121-35. [PMID: 22209824 DOI: 10.1016/j.preteyeres.2011.12.001] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 02/07/2023]
Abstract
The retina exhibits an inherent autofluorescence that is imaged ophthalmoscopically as fundus autofluorescence. In clinical settings, fundus autofluorescence examination aids in the diagnosis and follow-up of many retinal disorders. Fundus autofluorescence originates from the complex mixture of bisretinoid fluorophores that are amassed by retinal pigment epithelial (RPE) cells as lipofuscin. Unlike the lipofuscin found in other cell-types, this material does not form as a result of oxidative stress. Rather, the formation is attributable to non-enzymatic reactions of vitamin A aldehyde in photoreceptor cells; transfer to RPE occurs upon phagocytosis of photoreceptor outer segments. These fluorescent pigments accumulate even in healthy photoreceptor cells and are generated as a consequence of the light capturing function of the cells. Nevertheless, the formation of this material is accelerated in some retinal disorders including recessive Stargardt disease and ELOVL4-related retinal degeneration. As such, these bisretinoid side-products are implicated in the disease processes that threaten vision. In this article, we review our current understanding of the composition of RPE lipofuscin, the structural characteristics of the various bisretinoids, their related spectroscopic features and the biosynthetic pathways by which they form. We will revisit factors known to influence the extent of the accumulation and therapeutic strategies being used to limit bisretinoid formation. Given their origin from vitamin A aldehyde, an isomer of the visual pigment chromophore, it is not surprising that the bisretinoids of retina are light sensitive molecules. Accordingly, we will discuss recent findings that implicate the photodegradation of bisretinoid in the etiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 2010; 90:465-71. [DOI: 10.1016/j.exer.2009.12.011] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/30/2009] [Accepted: 12/30/2009] [Indexed: 11/19/2022]
|
8
|
Adhikary R, Schönenbrücher H, Rasmussen MA, Casey TA, Hamir AN, Kehrli ME, Richt JA, Petrich JW. A Comparison of the Fluorescence Spectra of Murine and Bovine Central Nervous System and Other Tissues. Photochem Photobiol 2009; 85:1322-6. [DOI: 10.1111/j.1751-1097.2009.00593.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Mukherjee P, Bose S, Hurd AA, Adhikary R, Schönenbrücher H, Hamir AN, Richt JA, Casey TA, Rasmussen MA, Petrich JW. Monitoring the accumulation of lipofuscin in aging murine eyes by fluorescence spectroscopy. Photochem Photobiol 2008; 85:234-8. [PMID: 18764899 DOI: 10.1111/j.1751-1097.2008.00425.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The integrated fluorescence of murine eyes is collected as a function of age. This fluorescence is attributed to pigments generally referred to as lipofuscin and is observed to increase with age. No difference in fluorescence intensity is observed between the eyes of males or females. This work provides a benchmark for further studies that are planned in order to use such signatures as markers of central nervous system (CNS) tissue or even of diseased CNS tissue and provides a basis for determining the age of a healthy animal.
Collapse
|
10
|
Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2007; 153:6-20. [PMID: 17643134 PMCID: PMC2199390 DOI: 10.1038/sj.bjp.0707395] [Citation(s) in RCA: 631] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reactive carbonyl compounds (RCCs) formed during lipid peroxidation and sugar glycoxidation, namely Advanced lipid peroxidation end products (ALEs) and Advanced Glycation end products (AGEs), accumulate with ageing and oxidative stress-related diseases, such as atherosclerosis, diabetes or neurodegenerative diseases. RCCs induce the 'carbonyl stress' characterized by the formation of adducts and cross-links on proteins, which progressively leads to impaired protein function and damages in all tissues, and pathological consequences including cell dysfunction, inflammatory response and apoptosis. The prevention of carbonyl stress involves the use of free radical scavengers and antioxidants that prevent the generation of lipid peroxidation products, but are inefficient on pre-formed RCCs. Conversely, carbonyl scavengers prevent carbonyl stress by inhibiting the formation of protein cross-links. While a large variety of AGE inhibitors has been developed, only few carbonyl scavengers have been tested on ALE-mediated effects. This review summarizes the signalling properties of ALEs and ALE-precursors, their role in the pathogenesis of oxidative stress-associated diseases, and the different agents efficient in neutralizing ALEs effects in vitro and in vivo. The generation of drugs sharing both antioxidant and carbonyl scavenger properties represents a new therapeutic challenge in the treatment of carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- A Negre-Salvayre
- INSERM U858, IFR-31 and Biochemistry Department, CHU Rangueil, University Toulouse-3, Toulouse, France.
| | | | | | | |
Collapse
|
11
|
Seehafer SS, Pearce DA. You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 2006; 27:576-88. [PMID: 16455164 DOI: 10.1016/j.neurobiolaging.2005.12.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/22/2005] [Accepted: 12/08/2005] [Indexed: 01/15/2023]
Abstract
Accumulation of intracellular autofluorescent material or "aging pigment" has been characterized as a normal aging event. Certain diseases also exhibit a similar accumulation of intracellular autofluorescent material. However, autofluorescent storage material associated with aging and disease has distinct characteristics. Lipofuscin is a common term for aging pigments, whereas ceroid is used to describe pathologically derived storage material, for example, in the neuronal ceroid lipofuscinoses (NCLs). NCLs are a family of neurodegenerative diseases that are characterized by an accumulation of autofluorescent storage material (ceroid) in the lysosome, which has been termed "lipofuscin-like". There have been many studies that describe this autofluorescent storage material, but what is it? Is this accumulation lipofuscin or ceroid? In this review we will try to answer the following questions: (1) What is lipofuscin and ceroid? (2) What contributes to the accumulation of this storage material in one or the other? (3) Does this material have an effect on cellular function? Studying parallels between the accumulation of lipofuscin and ceroid may provide insight into the biological relevance of these phenomena.
Collapse
Affiliation(s)
- Sabrina S Seehafer
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
12
|
Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005; 80:595-606. [PMID: 15862166 DOI: 10.1016/j.exer.2005.01.007] [Citation(s) in RCA: 446] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 01/10/2005] [Indexed: 01/05/2023]
Abstract
Emerging evidence indicates that the autofluorescent pigments that accumulate as lipofuscin in retinal pigment epithelial (RPE) cells may reach levels that contribute to a decline in cell function. Since recent findings with respect to the origin, composition and adverse effects of RPE lipofuscin have informed our view of this material, the goal of this article is to review our current understanding of these issues.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, 630 W 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|