1
|
Zhang B, Huang X, Huo S, Zhang C, Cen X, Zhao Z. Effect of photobiomodulation therapy on mini-implant stability: a systematic review and meta-analysis. Lasers Med Sci 2021; 36:1557-1566. [PMID: 33660109 DOI: 10.1007/s10103-021-03281-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/21/2021] [Indexed: 02/05/2023]
Abstract
The study aimed to assess trials investigating the effect of PBMT on mini-implant stability. Electronic searches of seven databases and manual search were conducted up to May 2020. Randomized controlled trials and controlled clinical trials evaluating the effect of PBMT on mini-implant stability were included. The risks of bias of individual studies were performed using ROB 2.0 and ROBINS-I-tool based on different study design. Meta-analysis was conducted to compare mini-implant stability exposed to PBMT with control ones at different time points after implantation. Among the 518 records initially identified, seven studies were included in this study. Six studies investigated low-level laser therapy (LLLT) and one study evaluated light-emitting diode (LED) therapy. Two studies were eligible for meta-analysis, which showed that LLLT significantly improved mini-implant stability 60 days after initial implantation (MD - 3.01, 95% CI range [- 4.68, - 1.35], p = 0.0004). High energy density of LLLT began to show beneficial effect on mini-implant stability as early as 3 days after implantation, while the significant effect of low energy density displayed later than 30 days after insertion. LED therapy could improve mini-implant stability after 2 months post-insertion. In conclusion, PBMT appears to be beneficial in ameliorating mini-implant stability. High energy density of LLLT might exert more rapid effect than low energy density. More high-quality clinical trials are needed to further demonstrate PBMT' effects on orthodontic mini-implants.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Sibei Huo
- Department of Stomatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, People's Republic of China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S. Effects of photobiomodulation on bone defects grafted with bone substitutes: A systematic review of in vivo animal studies. JOURNAL OF BIOPHOTONICS 2021; 14:e202000267. [PMID: 32857463 DOI: 10.1002/jbio.202000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Oral Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, India
| | - Andrea Amaroli
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nicola De Angelis
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Faculty of Dentistry, University of Technology MARA Sungai Buloh, Shah Alam, Malaysia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Rosso MPDO, Oyadomari AT, Pomini KT, Della Coletta BB, Shindo JVTC, Ferreira Júnior RS, Barraviera B, Cassaro CV, Buchaim DV, Teixeira DDB, Barbalho SM, Alcalde MP, Duarte MAH, Andreo JC, Buchaim RL. Photobiomodulation Therapy Associated with Heterologous Fibrin Biopolymer and Bovine Bone Matrix Helps to Reconstruct Long Bones. Biomolecules 2020; 10:383. [PMID: 32121647 PMCID: PMC7175234 DOI: 10.3390/biom10030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Bone defects cause aesthetic and functional changes that affect the social, economic and especially the emotional life of human beings. This complication stimulates the scientific community to investigate strategies aimed at improving bone reconstruction processes using complementary therapies. Photobiomodulation therapy (PBMT) and the use of new biomaterials, including heterologous fibrin biopolymer (HFB), are included in this challenge. The objective of the present study was to evaluate the influence of photobiomodulation therapy on bone tibial reconstruction of rats with biomaterial consisting of lyophilized bovine bone matrix (BM) associated or not with heterologous fibrin biopolymer. Thirty male rats were randomly separated into three groups of 10 animals. In all animals, after the anesthetic procedure, a noncritical tibial defect of 2 mm was performed. The groups received the following treatments: Group 1: BM + PBMT, Group 2: BM + HFB and Group 3: BM + HFB + PBMT. The animals from Groups 1 and 3 were submitted to PBMT in the immediate postoperative period and every 48 h until the day of euthanasia that occurred at 14 and 42 days. Analyses by computed microtomography (µCT) and histomorphometry showed statistical difference in the percentage of bone formation between Groups 3 (BM + HB + PBMT) and 2 (BM + HFB) (26.4% ± 1.03% and 20.0% ± 1.87%, respectively) at 14 days and at 42 days (38.2% ± 1.59% and 31.6% ± 1.33%, respectively), and at 42 days there was presence of bone with mature characteristics and organized connective tissue. The µCT demonstrated BM particles filling the defect and the deposition of new bone in the superficial region, especially in the ruptured cortical. It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Aline Tiemi Oyadomari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Claudia Vilalva Cassaro
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (Univ. Estadual Paulista, UNESP), Botucatu 18610-307, São Paulo, Brazil or (R.S.F.J.); (B.B.); (C.V.C.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
- Medical School, University Center of Adamantina (UniFAI), Nove de Julho Street, 730-Centro, Adamantina 17800-000, São Paulo, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| | - Murilo Priori Alcalde
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, São Paulo, Brazil;
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, São Paulo, Brazil;
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru 17012-901, São Paulo, Brazil; (M.P.d.O.R.); (A.T.O.); (K.T.P.); (B.B.D.C.); (J.V.T.C.S.); (J.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (D.V.B.); (D.d.B.T.); (S.M.B.)
| |
Collapse
|
4
|
Rosso MPDO, Buchaim DV, Pomini KT, Coletta BBD, Reis CHB, Pilon JPG, Duarte Júnior G, Buchaim RL. Photobiomodulation Therapy (PBMT) Applied in Bone Reconstructive Surgery Using Bovine Bone Grafts: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:4051. [PMID: 31817369 PMCID: PMC6947623 DOI: 10.3390/ma12244051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
The use of low-level laser therapy (LLLT) with biomodulatory effects on biological tissues, currently called photobiomodulation therapy (PBMT), assists in healing and reduces inflammation. The application of biomaterials has emerged in bone reconstructive surgery, especially the use of bovine bone due to its biocompatibility. Due to the many benefits related to the use of PBMT and bovine bones, the aim of this research was to review the literature to verify the relationship between PBMT and the application of bovine bone in bone reconstruction surgeries. We chose the PubMed/MEDLINE, Web of Science, and Scopus databases for the search by matching the keywords: "Bovine bone AND low-level laser therapy", "Bovine bone AND photobiomodulation therapy", "Xenograft AND low-level laser therapy", and "Xenograft AND photobiomodulation therapy". The initial search of the three databases retrieved 240 articles, 18 of which met all inclusion criteria. In the studies concerning animals (17 in total), there was evidence of PBMT assisting in biomaterial-related conduction, formation of new bone, bone healing, immunomarker expression, increasing collagen fibers, and local inflammation reduction. However, the results disagreed with regard to the resorption of biomaterial particles. The only human study showed that PBMT with bovine bone was effective for periodontal regeneration. It was concluded that PBMT assists the process in bone reconstruction when associated with bovine bone, despite divergences between applied protocols.
Collapse
Affiliation(s)
- Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru, SP 17012-901, Brazil; (M.P.d.O.R.); (K.T.P.); (B.B.D.C.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília, SP 17525–902, Brazil; (D.V.B.); (C.H.B.R.); (J.P.G.P.); (G.D.J.)
- Medical School, University Center of Adamantina (UniFAI), Nove de Julho Street, 730-Centro, Adamantina, SP 17800-000, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru, SP 17012-901, Brazil; (M.P.d.O.R.); (K.T.P.); (B.B.D.C.)
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru, SP 17012-901, Brazil; (M.P.d.O.R.); (K.T.P.); (B.B.D.C.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília, SP 17525–902, Brazil; (D.V.B.); (C.H.B.R.); (J.P.G.P.); (G.D.J.)
| | - João Paulo Galletti Pilon
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília, SP 17525–902, Brazil; (D.V.B.); (C.H.B.R.); (J.P.G.P.); (G.D.J.)
| | - Getúlio Duarte Júnior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília, SP 17525–902, Brazil; (D.V.B.); (C.H.B.R.); (J.P.G.P.); (G.D.J.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Alameda Dr. Octávio Pinheiro Brisolla, 9-75-Vila Universitaria, Bauru, SP 17012-901, Brazil; (M.P.d.O.R.); (K.T.P.); (B.B.D.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília, SP 17525–902, Brazil; (D.V.B.); (C.H.B.R.); (J.P.G.P.); (G.D.J.)
| |
Collapse
|
5
|
Bedeloğlu E, Ersanlı S, Arısan V. Vascular endothelial growth factor and biphasic calcium phosphate in the endosseous healing of femoral defects: An experimental rat study. J Dent Sci 2016; 12:7-13. [PMID: 30895017 PMCID: PMC6395273 DOI: 10.1016/j.jds.2016.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background/purpose The presence of adequate bone volume is a critical factor in rehabilitative dentistry. Despite the use of many promising alloplasts, success in stimulating bone formation has been limited, mostly due to poor local biological response. Growth factors have been introduced to stimulate angiogenesis and new bone formation. This histologic and histomorphometric study aimed to evaluate the effect of vascular endothelial growth factor (VEGF) and a biphasic alloplastic graft material (BA) on the healing of endosseous defects in rats. Materials and methods Twenty male Wistar rats were used. Two critical-sized bone defects were created in both the right and left femurs of each rat. Each defect was randomly assigned to be treated with VEGF, BA, or VEGF + BA, or to be left empty as a control. Half of the animals were sacrificed after 1 week, and the remaining half were sacrificed after 2 weeks. Inflammation, necrosis, and new bone areas were evaluated by means of histologic and histomorphometric analyses. Results Compared to the control group, defects treated with VEGF alone or in combination with BA showed higher rates of bone formation (33.10–46.60%) on Day 7. Additionally, VEGF significantly reduced inflammation and necrosis (P < 0.001). However, the differences were no longer discernable on Day 14. Conclusion VEGF makes a significant contribution to angiogenesis and osteogenesis in the early stages of bone defect healing, and its combination with an osteoconductive grafting material (BA) may further enhance new bone formation.
Collapse
Affiliation(s)
- Elçin Bedeloğlu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, İstanbul Aydın University, Istanbul, Turkey
| | - Selim Ersanlı
- Department of Oral Implantology, Faculty of Dentistry, Capa, Istanbul University, Istanbul, Turkey
| | - Volkan Arısan
- Department of Oral Implantology, Faculty of Dentistry, Capa, Istanbul University, Istanbul, Turkey
- Corresponding author. Dr. Volkan Arısan, Department of Oral Implantology, Faculty of Dentistry, Istanbul University, 34390-Capa, Istanbul, Turkey.
| |
Collapse
|
6
|
The dark art of light measurement: accurate radiometry for low-level light therapy. Lasers Med Sci 2016; 31:789-809. [PMID: 26964800 PMCID: PMC4851696 DOI: 10.1007/s10103-016-1914-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of ‘dose,’ and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of ‘best practice’ in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014–March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73 %) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3 %), light source type (8 %), power (41 %), pulse frequency (52 %), beam area (40 %), irradiance (43 %), exposure time (16 %), radiant energy (74 %) and fluence (16 %). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement methods and all ten key parameters: wavelength, power, irradiation time, beam area (at the skin or culture surface; this is not necessarily the same size as the aperture), radiant energy, radiant exposure, pulse parameters, number of treatments, interval between treatments and anatomical location. Inclusion of these parameters will improve the information available to compare and contrast study outcomes and improve repeatability, reliability of studies.
Collapse
|