1
|
Lama-Diaz T, Blanco MG. Alternative translation initiation by ribosomal leaky scanning produces multiple isoforms of the Pif1 helicase. Nucleic Acids Res 2024; 52:6928-6944. [PMID: 38783074 PMCID: PMC11229318 DOI: 10.1093/nar/gkae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In budding yeast, the integrity of both the nuclear and mitochondrial genomes relies on dual-targeted isoforms of the conserved Pif1 helicase, generated by alternative translation initiation (ATI) of PIF1 mRNA from two consecutive AUG codons flanking a mitochondrial targeting signal. Here, we demonstrate that ribosomal leaky scanning is the specific ATI mechanism that produces not only these, but also novel, previously uncharacterized Pif1 isoforms. Both in-frame, downstream AUGs as well as near-cognate start codons contribute to the generation of these alternative isoforms. This has crucial implications for the rational design of genuine separation-of-function alleles and provides an explanation for the suboptimal behaviour of the widely employed mitochondrial- (pif1-m1) and nuclear-deficient (pif1-m2) alleles, with mutations in the first or second AUG codon, respectively. We have taken advantage of this refined model to develop improved versions of these alleles, which will serve as valuable tools to elucidate novel functions of this helicase and to disambiguate previously described genetic interactions of PIF1 in the context of nuclear and mitochondrial genome stability.
Collapse
Affiliation(s)
- Tomas Lama-Diaz
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
2
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons R, Niu H, Bochman M. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. Nucleic Acids Res 2024; 52:6317-6332. [PMID: 38613387 PMCID: PMC11194072 DOI: 10.1093/nar/gkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Zhitong Feng
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Jiangchuan Shen
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Spencer J Gray
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Simmons
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Hengyao Niu
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Kotenko O, Makovets S. The functional significance of the RPA- and PCNA-dependent recruitment of Pif1 to DNA. EMBO Rep 2024; 25:1734-1751. [PMID: 38480846 PMCID: PMC11014909 DOI: 10.1038/s44319-024-00114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.
Collapse
Affiliation(s)
- Oleksii Kotenko
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Svetlana Makovets
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
4
|
Williams SL, Casas‐Delucchi CS, Raguseo F, Guneri D, Li Y, Minamino M, Fletcher EE, Yeeles JTP, Keyser UF, Waller ZAE, Di Antonio M, Coster G. Replication-induced DNA secondary structures drive fork uncoupling and breakage. EMBO J 2023; 42:e114334. [PMID: 37781931 PMCID: PMC10646557 DOI: 10.15252/embj.2023114334] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.
Collapse
Affiliation(s)
- Sophie L Williams
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Corella S Casas‐Delucchi
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Federica Raguseo
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
| | | | - Yunxuan Li
- Cavendish LaboratoryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | - Marco Di Antonio
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
- Francis Crick InstituteLondonUK
| | - Gideon Coster
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| |
Collapse
|
5
|
Papageorgiou AC, Pospisilova M, Cibulka J, Ashraf R, Waudby CA, Kadeřávek P, Maroz V, Kubicek K, Prokop Z, Krejci L, Tripsianes K. Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase. Nat Commun 2023; 14:6751. [PMID: 37875529 PMCID: PMC10598209 DOI: 10.1038/s41467-023-42503-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s). We describe a three-step model of charge-driven coacervation by integrating equilibrium and kinetic binding data in a global numerical model. The oppositely charged IDR and G4 molecules form a complex in the solution that follows a rapid nucleation-growth mechanism leading to a dynamic equilibrium between dilute and condensed phases. We also discover a physical interaction with Replication Protein A (RPA) and demonstrate that the IDR can switch between the two extremes of the structural continuum of complexes. The structural, kinetic, and thermodynamic profile of its interactions revealed a dynamic disordered complex with nucleic acids and a static ordered complex with RPA protein. The two mutually exclusive binding modes suggest a regulatory role for the IDR in RECQ4 function by enabling molecular handoffs. Our study extends the functional repertoire of IDRs and demonstrates a role of polyelectrolyte complexes involved in G4 binding.
Collapse
Affiliation(s)
- Anna C Papageorgiou
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michaela Pospisilova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Cibulka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Raghib Ashraf
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Pavel Kadeřávek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Volha Maroz
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.
| | | |
Collapse
|
6
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
7
|
Ghaddar N, Corda Y, Luciano P, Galli M, Doksani Y, Géli V. The COMPASS subunit Spp1 protects nascent DNA at the Tus/Ter replication fork barrier by limiting DNA availability to nucleases. Nat Commun 2023; 14:5430. [PMID: 37669924 PMCID: PMC10480214 DOI: 10.1038/s41467-023-41100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Homologous recombination factors play a crucial role in protecting nascent DNA during DNA replication, but the role of chromatin in this process is largely unknown. Here, we used the bacterial Tus/Ter barrier known to induce a site-specific replication fork stalling in S. cerevisiae. We report that the Set1C subunit Spp1 is recruited behind the stalled replication fork independently of its interaction with Set1. Spp1 chromatin recruitment depends on the interaction of its PHD domain with H3K4me3 parental histones deposited behind the stalled fork. Its recruitment prevents the accumulation of ssDNA at the stalled fork by restricting the access of Exo1. We further show that deleting SPP1 increases the mutation rate upstream of the barrier favoring the accumulation of microdeletions. Finally, we report that Spp1 protects nascent DNA at the Tus/Ter stalled replication fork. We propose that Spp1 limits the remodeling of the fork, which ultimately limits nascent DNA availability to nucleases.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institute Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe Labellisée), Marseille, France
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institute Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe Labellisée), Marseille, France
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institute Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe Labellisée), Marseille, France
| | - Martina Galli
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ylli Doksani
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institute Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe Labellisée), Marseille, France.
| |
Collapse
|
8
|
Vaurs M, Naiman K, Bouabboune C, Rai S, Ptasińska K, Rives M, Matmati S, Carr AM, Géli V, Coulon S. Stn1-Ten1 and Taz1 independently promote replication of subtelomeric fragile sequences in fission yeast. Cell Rep 2023; 42:112537. [PMID: 37243596 DOI: 10.1016/j.celrep.2023.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
Efficient replication of terminal DNA is crucial to maintain telomere stability. In fission yeast, Taz1 and the Stn1-Ten1 (ST) complex play prominent roles in DNA-ends replication. However, their function remains elusive. Here, we have analyzed genome-wide replication and show that ST does not affect genome-wide replication but is crucial for the efficient replication of a subtelomeric region called STE3-2. We further show that, when ST function is compromised, a homologous recombination (HR)-based fork restart mechanism becomes necessary for STE3-2 stability. While both Taz1 and Stn1 bind to STE3-2, we find that the STE3-2 replication function of ST is independent of Taz1 but relies on its association with the shelterin proteins Pot1-Tpz1-Poz1. Finally, we demonstrate that the firing of an origin normally inhibited by Rif1 can circumvent the replication defect of subtelomeres when ST function is compromised. Our results help illuminate why fission yeast telomeres are terminal fragile sites.
Collapse
Affiliation(s)
- Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Karel Naiman
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Chaïnez Bouabboune
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Sudhir Rai
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Katarzyna Ptasińska
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Marion Rives
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Samah Matmati
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Vincent Géli
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| | - Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Ligue Nationale Contre le Cancer (équipe labellisée), Marseille, France.
| |
Collapse
|
9
|
Li X, Wang L, Liu X, Zheng Z, Kong D. Cellular regulation and stability of DNA replication forks in eukaryotic cells. DNA Repair (Amst) 2022; 120:103418. [DOI: 10.1016/j.dnarep.2022.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
10
|
Kuppa S, Deveryshetty J, Chadda R, Mattice JR, Pokhrel N, Kaushik V, Patterson A, Dhingra N, Pangeni S, Sadauskas MK, Shiekh S, Balci H, Ha T, Zhao X, Bothner B, Antony E. Rtt105 regulates RPA function by configurationally stapling the flexible domains. Nat Commun 2022; 13:5152. [PMID: 36056028 PMCID: PMC9440123 DOI: 10.1038/s41467-022-32860-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric complex that binds to single-stranded DNA (ssDNA) and recruits over three dozen RPA-interacting proteins to coordinate multiple aspects of DNA metabolism including DNA replication, repair, and recombination. Rtt105 is a molecular chaperone that regulates nuclear localization of RPA. Here, we show that Rtt105 binds to multiple DNA binding and protein-interaction domains of RPA and configurationally staples the complex. In the absence of ssDNA, Rtt105 inhibits RPA binding to Rad52, thus preventing spurious binding to RPA-interacting proteins. When ssDNA is available, Rtt105 promotes formation of high-density RPA nucleoprotein filaments and dissociates during this process. Free Rtt105 further stabilizes the RPA-ssDNA filaments by inhibiting the facilitated exchange activity of RPA. Collectively, our data suggest that Rtt105 sequesters free RPA in the nucleus to prevent untimely binding to RPA-interacting proteins, while stabilizing RPA-ssDNA filaments at DNA lesion sites. The single stranded DNA binding protein RPA coordinates DNA metabolism using multiple protein and DNA interaction domains. Here, the authors show that the chaperone-like protein Rtt105 staples RPA domains to prevent untimely protein interactions.
Collapse
Affiliation(s)
- Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.,Laronde Bio, Cambridge, MA, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Nalini Dhingra
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sushil Pangeni
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marisa K Sadauskas
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA. .,Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
11
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
12
|
Casas-Delucchi CS, Daza-Martin M, Williams SL, Coster G. The mechanism of replication stalling and recovery within repetitive DNA. Nat Commun 2022; 13:3953. [PMID: 35853874 PMCID: PMC9296464 DOI: 10.1038/s41467-022-31657-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate chromosomal DNA replication is essential to maintain genomic stability. Genetic evidence suggests that certain repetitive sequences impair replication, yet the underlying mechanism is poorly defined. Replication could be directly inhibited by the DNA template or indirectly, for example by DNA-bound proteins. Here, we reconstitute replication of mono-, di- and trinucleotide repeats in vitro using eukaryotic replisomes assembled from purified proteins. We find that structure-prone repeats are sufficient to impair replication. Whilst template unwinding is unaffected, leading strand synthesis is inhibited, leading to fork uncoupling. Synthesis through hairpin-forming repeats is rescued by replisome-intrinsic mechanisms, whereas synthesis of quadruplex-forming repeats requires an extrinsic accessory helicase. DNA-induced fork stalling is mechanistically similar to that induced by leading strand DNA lesions, highlighting structure-prone repeats as an important potential source of replication stress. Thus, we propose that our understanding of the cellular response to replication stress may also be applied to DNA-induced replication stalling.
Collapse
Affiliation(s)
- Corella S Casas-Delucchi
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Manuel Daza-Martin
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Sophie L Williams
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Gideon Coster
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
13
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
14
|
Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain. Int J Mol Sci 2022; 23:ijms23020768. [PMID: 35054954 PMCID: PMC8775963 DOI: 10.3390/ijms23020768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
Collapse
|
15
|
Abstract
The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Corda Y, Maestroni L, Luciano P, Najem MY, Géli V. Genome stability is guarded by yeast Rtt105 through multiple mechanisms. Genetics 2021; 217:6126811. [PMID: 33724421 DOI: 10.1093/genetics/iyaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.
Collapse
Affiliation(s)
- Yves Corda
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Maestroni
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Pierre Luciano
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Maria Y Najem
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vincent Géli
- CNRS UMR7258, INSERM U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
18
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
19
|
Wang YR, Guo TT, Zheng YT, Lai CW, Sun B, Xi XG, Hou XM. Replication protein A plays multifaceted roles complementary to specialized helicases in processing G-quadruplex DNA. iScience 2021; 24:102493. [PMID: 34113828 PMCID: PMC8169993 DOI: 10.1016/j.isci.2021.102493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/28/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures with critical roles in DNA metabolisms. To resolve those structures that can cause replication fork stalling and genomic instability, single-stranded DNA-binding proteins and helicases are required. Here, we characterized the interplay between RPA and helicases on G4s using single-molecule FRET. We first discovered that human RPA efficiently prevents G4 formation by preempting ssDNA before its folding. RPA also differentially interacts with the folded G4s. However, helicases such as human BLM and yeast Pif1 have different G4 preferences from RPA mainly based on loop lengths. More importantly, both RPA and these helicases are required for the stable G4 unfolding, as RPA promotes helicase-mediated repetitive unfolding into durative linear state. Furthermore, BLM can traverse G4 obstacles temporarily disrupted by RPA and continue to unwind downstream duplex. We finally proposed the mechanisms underlying above functions of RPA in preventing, resolving, and assisting helicases to eliminate G4s. RPA efficiently prevents G4 formation by preempting ssDNA before its folding Loop length may direct folded G4s to different unfolding way by RPA and helicases RPA promotes helicase-mediated repetitive G4 unfolding into durative linear state RPA assists BLM to overcome G4 obstacle and continue to unwind downstream duplex
Collapse
Affiliation(s)
- Yi-Ran Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting-Ting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya-Ting Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chang-Wei Lai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat Commun 2021; 12:2525. [PMID: 33953191 PMCID: PMC8099879 DOI: 10.1038/s41467-021-22830-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.
Collapse
|
21
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
22
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|